Skip to main content

Constructed Wetlands: A Clean-Green Technology for Degradation and Detoxification of Industrial Wastewaters

  • Chapter
  • First Online:

Abstract

Constructed wetlands (CWs) have played a significant role in the purification and treatment of domestic, mining, agricultural, and industrial wastewater in the last few decades. CWs are designed and constructed on engineered systems to develop the natural processes involving wetland soils, flora, and their related microbial accumulations to support wastewater treatment. The CWs, therefore, present environmentally friendly, cost-effective, and favorable substitute for industrial wastewater treatment. Several techniques have been used in the removal of contaminants from CWs such as filtration, sedimentation, adsorption, volatilization, phyto-accumulation, and microbial activity. In the past, CWs have played efficient role in the removal of toxic metals, hydrocarbons, pharmaceuticals, and dyes from wastewater. However, the efficiency mainly depends on initial concentrations of contaminants, plant types, plant microbes’ interactions, climatic condition and flow rate of wastewater etc. The overall conclusion of this book chapter will contribute to the development of phyto-technology for industrial wastewater and other associated industrial problems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Admire JD, De Albuquerque JS, Cruze JA, Piontek KR, Sale TC (1995) Case study: natural attenuation of dissolved hydrocarbons at a former gas plant. Paper SPE 29755 presented in SPE/EPA exploration and production environmental conference held 27–29 March in Houston, Texas

    Google Scholar 

  • Aksoy A, Demirezen D, Duman F (2005) Bioaccumulation, detection and analyses of heavy metal pollution in Sultan Marsh and its environment. Water Air Soil Pollut 164:241–255

    Article  CAS  Google Scholar 

  • Alloway BJ (1995) Heavy metals in soils, 2n edn. Chapman and Hall, London, p 368

    Book  Google Scholar 

  • Arias C, Brix H (2003) Humedales artificiales para el tratamiento de aguas residuales. Cienc Ing Neogranad 13:17–44

    Article  Google Scholar 

  • Atlas RM, Cerniglia CE (1995) Bioremediation of petroleum pollutants: diversity and environmental aspects of hydrocarbon biodegradation. Bioscience 45:332–338

    Article  Google Scholar 

  • Alexander M (1999) Biodegradation and bioremediation, 2nd edn. Academic Press, New York

    Google Scholar 

  • Baris AJ, Eifert WH, Klotzer K, McGuckin CJ (2001) Use of a subsurface flow constructed wetland for collection and treatment of water containing BTEX. Roux Associates, Inslandia

    Google Scholar 

  • Beining BA, Otte ML (1996) Retention of metals originating from an abandoned lead-zinc mine by a wetland at Glendalough, Co. Wicklow. Biol Environ 96:117–126

    Google Scholar 

  • Beining BA, Otte ML (1997) Retention of metals and longevity of a wetland receiving mine leachate. In: Proceedings of 1997 National meeting of the American Society for surface mining and reclamation, Austin, Texas, vol. 10, issue 16, pp 43–46

    Article  Google Scholar 

  • Beisner BE, Peres-Neto PR, Lindström ES, Barnett A, Lorena Longhi M (2006) The role of environmental and spatial processes in structuring lake communities from bacteria to fish. Ecology 87:2985–2991

    Article  Google Scholar 

  • Bell T, Newman JA, Silverman BW, Turner SL, Lilley AK (2005) The contribution of species richness and composition to bacterial services. Nature 436:1157–1160

    Article  CAS  Google Scholar 

  • Bharagava RN, Saxena G, Chowdhary P (2017a) Constructed wetlands: an emerging phytotechnology for degradation and detoxification of industrial wastewaters. In: Bharagava RN (ed) Environmental pollutants and their bioremediation approaches, 1st edn. CRC Press/Taylor & Francis, Boca Raton, pp 397–426. https://doi.org/10.1201/9781315173351-15

    Chapter  Google Scholar 

  • Bharagava RN, Chowdhary P, Saxena G (2017b) Bioremediation: an ecosustainable green technology: its applications and limitations. In: Bharagava RN (ed) Environmental pollutants and their bioremediation approaches, 1st edn. CRC Press/Taylor & Francis, Boca Raton, pp 1–22. https://doi.org/10.1201/9781315173351-2

    Chapter  Google Scholar 

  • Bharagava RN, Saxena G, Mulla SI, Patel DK (2017c) Characterization and identification of recalcitrant organic pollutants (ROPs) in tannery wastewater and its phytotoxicity evaluation for environmental safety. Arch Environ Contam Toxicol. https://doi.org/10.1007/s00244-017-0490-x

    Article  CAS  Google Scholar 

  • Bond DR, Lovley DR (2003) Electricity production by Geobacter sulfurreducens attached to electrodes. Appl Environ Microbiol 69:1548–1555

    Article  CAS  Google Scholar 

  • Boxall ABA, Blackwell P, Cavallo R, Kay P, Tolls J (2002) The sorption and transport of a sulphonamide antibiotic in soil systems. Toxicol Lett 131:19–28

    Article  CAS  Google Scholar 

  • Bremer C, Braker G, Matthies D, Reuter A, Engels C, Conrad R (2007) Impact of plant functional group, plant species, and sampling time on the composition of nirK-type denitrifier communities in soil. Appl Environ Microbiol 73:6876–6884. https://doi.org/10.1128/AEM.01536-07

    Article  CAS  Google Scholar 

  • Breitholtz M, Näslund M, Stråe D, Borg H, Grabic R, Fick J (2012) An evaluation of free water surface wetlands as tertiary sewage treatment of micro-pollutants. Ecotoxicol Environ Saf 78:63–71

    Article  CAS  Google Scholar 

  • Brix H (1997) Do macrophytes play a role in constructed treatment wetlands? Water Sci Technol 35(5):11–17

    Article  CAS  Google Scholar 

  • Bunluesin S, Kruatrachue M, Pokethitiyook P, Upatham S, Lanza GR (2007) Batch and continuous packed column studies of cadmium biosorption by Hydrilla verticillata biomass. J Biosci Bioeng 103:509–513

    Article  CAS  Google Scholar 

  • Burland SM, Edwards EA (1999) Anaerobic benzene biodegradation linked to nitrate reduction. Appl Environ Microbiol 65(2):529–533

    CAS  Google Scholar 

  • Coates J, Chakraborty R, Lack J, O’Connor S, Cole K, Bender K, Achenbach L (2001) Anaerobic benzene oxidation coupled to nitrate reduction in pure culture by two strains of dechloromonas. Nature 411(6841):1039–1043. https://doi.org/10.1038/35082545

    Article  CAS  Google Scholar 

  • Camacho-Munoz D, Martin J, Santos JL, Aparicio I, Alonso E (2012) Effectiveness of conventional and low-cost wastewater treatments in the removal of pharmaceutically active compounds. Water Air Soil Pollut 223(5):2611–2621

    Article  CAS  Google Scholar 

  • Caswell PC, Gelb D, Marinello SA, Emerick JC, Cohen RR (1992) Evaluation of constructed surface-flow wetlands systems for the treatment of discharged waters from oil and gas operations in Wyoming. In: SPE Rocky Mountain regional conference. Paper SPE 24331, Casper, Wyoming

    Google Scholar 

  • Chandra R, Saxena G, Kumar V (2015) Phytoremediation of environmental pollutants: an eco-sustainable green technology to environmental management. In: Chandra R (ed) Advances in biodegradation and bioremediation of industrial waste, 1st edn. CRC Press/Taylor & Francis, Boca Raton, pp 1–30. https://doi.org/10.1201/b18218-2

    Chapter  Google Scholar 

  • Chaudhry Q, Blom-Zandstra M, Gupta S, Joner EJ (2005) Utilising the synergy between plants and rhizosphere microorganisms to enhance breakdown of organic pollutants in the environment. Environ Sci Pollut Res 12:34–48

    Article  CAS  Google Scholar 

  • Cheng SP, Grosse W, Karrenbrock F, Thoennessen M (2002) Efficiency of constructed wetlands in decontamination of water polluted by heavy metals. Ecol Eng 18:317–325

    Article  Google Scholar 

  • Coates JD, Chakraborty R, McInerney MJ (2002) Anaerobic benzene biodegradation – a new era. Res Microbiol 153(10):621–628

    Article  CAS  Google Scholar 

  • Conkle JL, Gan J, Anderson MA (2012) Degradation and sorption of commonly detected PPCPs in wetland sediments under aerobic and anaerobic conditions. J Soils Sediments 12(7):1164–1173

    Article  CAS  Google Scholar 

  • Dagley S (1986) Biochemistry of aromatic hydrocarbon degradation in Pseudomonas. In: Sokatch J, Ornston LN (eds) The Bacteria, The biology of Pseudomonas, vol 10. Academic Press, Orlando, pp 527–555

    Google Scholar 

  • Dahllöf I (2002) Molecular community analysis of microbial diversity. Curr Opin Biotechnol 13:213–217

    Article  CAS  Google Scholar 

  • Daniels R (2001) Enter the root-zone: green technology for the leather manufacturer, part 3. World Leather 14(6):85–88

    Google Scholar 

  • De Sousa JT, van Haandel A, Lima EPC, Guimarães AVA (2003) Performance of constructed wetland systems treating anaerobic effluents. Water Sci Technol 48(6):295–299

    Article  Google Scholar 

  • Demirezen D, Aksoy A, Uruc K (2007) Effect of population density on growth, biomass and nickel accumulation capacity of Lemna gibba (Lemnaceae). Chemosphere 66:553–557

    Article  CAS  Google Scholar 

  • Descousse A, Monig K, Voldum K (2004) Evaluation study of various produced- water treatment technologies to remove dissolved aromatic components. In: Society of Petroleum Engineers (SPE) annual technical conference and exhibition held 26–29 September 2004, in Houston, Texas. Paper SPE 90103 2004. (Available on http://www.spe.org/elibrary)

  • Diaz E (2004) Bacterial degradation of aromatic pollutants: a paradigm of metabolic versatility. Int Microbiol 7(3):173–180

    CAS  Google Scholar 

  • Dordio A, Carvalho AJP, TeixeiraDM DCB, Pinto AP (2010) Removal of pharmaceuticals in microcosm constructed wetlands using Typha spp. and LECA. Bioresour Technol 101(3):886–892

    Article  CAS  Google Scholar 

  • Dorman L, Castle JW, Rodgers JH (2009) Performance of a pilot-scale constructed wetland system for treating simulated ash basin water. Chemosphere 75:939–947

    Article  CAS  Google Scholar 

  • Environmental Protection Agency (2013) Particulate and turbidity removal technologies. United States Environmental Protection Agency. N.p., 16 Jan 2013. Web. 7 May 2014. http://www.epa.gov/nrmrl/wswrd/dw/smallsystems/ptr.html

  • Fleischer S, Gustafson A, Joelsson A, Pansar J, Stibe L (1994) Nitrogen removal in created ponds. Ambio 23:349–357

    Google Scholar 

  • Gambrell RP (1994) Trace and toxic metals in wetlands e a review. J Environ Qual 23:883–889

    Article  CAS  Google Scholar 

  • Garcia C, Moreno DA, Ballester A, Blazquez ML, Gonzalez F (2001) Bioremediation of an industrial acid mine water by metal-tolerant sulphate-reducing bacteria. Miner Eng 14:997–1008

    Article  CAS  Google Scholar 

  • Gautam S, Kaithwas G, Bharagava RN, Saxena G (2017) Pollutants in tannery wastewater, pharmacological effects and bioremediation approaches for human health protection and environmental safety. In: Bharagava RN (ed) Environmental pollutants and their bioremediation approaches, 1st edn. CRC Press/Taylor & Francis, Boca Raton, pp 369–396. https://doi.org/10.1201/9781315173351-14

    Chapter  Google Scholar 

  • Gilbert N (2012) Drug-pollution law all washed up. Nature Int Wkly J Sci 491:503–504. Web. 8 May. 2014. http://www.nature.com/news/drug-pollution-law-all-washed-up-1.11854

    Article  CAS  Google Scholar 

  • Goulet RR, Pick FR (2001) The effects of cattails (Typha latifolia L.) on concentrations and partitioning of metals in surficial sediments of surface-flow constructed wetlands. Water Air Soil Pollut 132:275–291

    Article  CAS  Google Scholar 

  • Goutam SP, Saxena G, Singh V, Yadav AK, Bharagava RN (2018) Green synthesis of TiO2 nanoparticles using leaf extract of Jatropha curcas L. for photocatalytic degradation of tannery wastewater. Chem Eng J 336:386–396. https://doi.org/10.1016/j.cej.2017.12.029

    Article  CAS  Google Scholar 

  • Goyal S, Sharma G, Bhardwaj KK (2009) Decolorization of synthetic dye (methyl red) waste water using constructed wetlands having upflow and downflow loading formate. Rasayan J Chem 2(2):329–331

    CAS  Google Scholar 

  • Greenway M, Bolton KGE (1996) From wastes to resources – turning over a new leaf: Melaleuca trees for wastewater treatment. Environ Res Forum 5–6:363–366

    Google Scholar 

  • Hawkins WB, Rodgers JH, Gillespie WB, Dunn AW, Dorn PB, Cano ML (1997) Design and construction of wetlands for aqueous transfers and transformations of selected metals. Ecotox Environ Safe 36:238–248

    Article  CAS  Google Scholar 

  • Hallin S, Lindgren P-E (1999) PCR detection of genes encoding nitrite reductase in denitrifying bacteria. Appl Environ Microbiol 65:1652–1657

    CAS  Google Scholar 

  • Hannig J, Iyer HK, Patterson P (2006) Fiducial generalized confidence intervals. J Am Stat Assoc 101:254–269

    Article  CAS  Google Scholar 

  • Hiegel T (2004) Analysis of pilot scale constructed wetland treatment of petroleum contaminated groundwater. MSc thesis, Department of Civil Engineering, University of Wyoming

    Google Scholar 

  • Hijosa-Valsero M, Matamoros V, Sidrach-Cardona R, Martin-Villacorta J, Becares E, Bayona JM (2010) Comprehensive assessment of the design configuration of constructed wetlands for the removal of pharmaceuticals and personal care products from urban wastewaters. Water Res 4(12):3669–3678

    Article  CAS  Google Scholar 

  • Hoagland RE, Williams RD (1985) The influence of secondary plant compounds on the associations of soil microorganisms and plant roots. In: Thompson AC (ed) The Chemistry of allelopathy: biochemical interactions among plants. American Chemical Society, Washington, DC, pp 301–325

    Chapter  Google Scholar 

  • Holmstrom, H (2000) Geochemical processes in sulphidic mine tailings: field and laboratory studies performed in northern Sweden at the Laver, Stekenjokk and Kristineberg mine sites. PhD dissertation 2000:03. Lulea University of Technology, Lulea, Sweden

    Google Scholar 

  • Horne AJP (2000) Phytoremediation by constructed wetlands. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York, pp 13–39

    Google Scholar 

  • Horner-Devine CM, Leibold MA, Smith VH, Bohannan BJM (2003) Bacterial diversity patterns along a gradient of primary productivity. Ecol Lett 6:613–622

    Article  Google Scholar 

  • Hussain SA, Prasher SO (2011) Understanding the sorption of ionophoric pharmaceuticals in a treatment wetland. Wetlands 31(3):63–571

    Article  Google Scholar 

  • Ilker U, Duan YP, Ogram A (2000) Characterization of the naphthalene-degrading bacterium, Rhodococcus opacus M213. FEMS Microbiol Lett 185(2):231–238

    Article  Google Scholar 

  • International Association of Oil and Gas Producers (2002) Aromatics in produced water: occurrence, fate and effects, and treatment. Report no. 1.20/324 (January 2002). International Association of Oil and Gas Producers, London

    Google Scholar 

  • ITRC (2003) Technical and regulatory guidance document for constructed treatment wetlands. The Interstate Technology and Regulatory Council Wetlands Team 128

    Google Scholar 

  • Janks JS, Cadena F (1991) Identification and properties of modified zeolites for the removal of Benzene, Toluene and Xylene from Aqueous solutions. Paper SPE 22833 presented in 1991 Society of Petroleum Engineers (SPE) Annual Technical Conference and Exhibition held 6-9 October, Dallas, Texas, USA

    Google Scholar 

  • Jenssen PD, Maehlum T, Krogstad T (1993) Potential use of constructed wetlands for waste-water treatment in Northern environments. Water Sci Technol 28:149–157

    Article  Google Scholar 

  • Ji GD, Sun TH, Ni JR (2007) Surface flow constructed wetland for heavy oil- produced water treatment. Bioresour Technol 98(2):436–441

    Article  CAS  Google Scholar 

  • Jiang JQ, Zhou Z, Sharma VK (2013) Occurrence, transportation, monitoring and treatment of emerging micro-pollutants in waste water – a review from global views. Microchem J 110:292–300

    Article  CAS  Google Scholar 

  • Jonsson J, Lovgren L (2006) Precipitation of secondary Fe(III) minerals from acid mine drainage. Appl Geochem 21:437–445

    Article  CAS  Google Scholar 

  • Juwarker AS, Oke B, Patnaik SM (1995) Domestic wastewater treatment through constructed wetland in India. Water Sci Technol 32:291–294

    Article  Google Scholar 

  • Kadlec RH, Knight RL (1996) Treatment wetlands. CRC Press, Inc, Boca Raton

    Google Scholar 

  • Kadlec RH, Knight RL, Vymazal J, Brix H, Cooper P, Haberl R (2000) Constructed wetlands for pollution control – processes, performance, design and operation. IWA Scientific and technical report no. 8. IWA Publishing, London, UK

    Google Scholar 

  • Kamal M, Ghaly AE, Mahmoud N, Cote R (2004) Phytoaccumulation of heavy metals by aquatic plants. Environ Int 29:1029–1039

    Article  CAS  Google Scholar 

  • Khetan KS, Collins JT (2007) Human pharmaceuticals in the aquatic environment: a challenge to green chemistry. Chem Rev 107:2319–2364

    Article  CAS  Google Scholar 

  • Kivaisi AK (2001) The potential for constructed wetlands for wastewater treatment and reuse in developing countries – a review. Ecol Eng 16:545–560

    Article  Google Scholar 

  • Klomjek P, Nitisoravut S (2005) Constructed treatment wetland: a study of eight plant species under saline conditions. Chemosphere 58:585–593

    Article  CAS  Google Scholar 

  • Knight RL, Kadlec RH, Ohlendorf HM (1999) The use of treatment wetlands for petroleum industry effluents. Environ Sci Technol 33(7):973–980

    Article  CAS  Google Scholar 

  • Korkusuz EA (2005) Manual of practice on constructed wetland for wastewater treatment and reuse in Mediterranean Countries. report, MED-REUNET II Support Programme (EC Project No: INCO-CT-2003–502453), AGBAR Foundation

    Google Scholar 

  • Kotyza J, Soudek P, Kafka Z, Vanek T (2010) Phytoremediation of pharmaceuticals – preliminary study. Int J Phytoremediation 12(3):306–316

    Article  CAS  Google Scholar 

  • Kummerer K (2009) Antibiotics in the aquatic environment -a review–part II. Chemosphere 75:435–441

    Article  CAS  Google Scholar 

  • Lahvis MA, Baehr AL, Baker RJ (1999) Quantification of aerobic biodegradation and volatilization rates of gasoline hydrocarbons near the water table under natural attenuation conditions. Water Resour Res 35(3):753–765

    Article  CAS  Google Scholar 

  • Langenheder S, Prosser JI (2008) Resource availability influences the diversity of a functional group of heterotrophic soil bacteria. Environ Microbiol 10:2245–2256

    Article  CAS  Google Scholar 

  • Lee BH, Scholz M (2007) What is the role of Phragmites australis in experimental constructed wetland filters treating urban runoff? Ecol Eng 29:87–95

    Article  Google Scholar 

  • Lefebvre O, Moletta R (2006) Treatment of organic pollution in industrial saline wastewater: a literature review. Water Res 40:3671–3682

    Article  CAS  Google Scholar 

  • Lemanceau P, Bauer P, Kraemer S, Briat JF (2009) Iron dynamics in the rhizosphere as a case study for analyzing interactions between soils, plants and microbes. Plant Soil 321:513–535

    Article  CAS  Google Scholar 

  • Lesage E, Rousseau DPL, Meers E, Tack FMG, De Pauw N (2007) Accumulation of metals in a horizontal subsurface flow constructed wetland treating domestic wastewater in Flanders, Belgium. Sci Total Environ 380:102–115

    Article  CAS  Google Scholar 

  • Leyval C, Joner EJ, del Val C, Haselwandter K (2002) Potential of arbuscular mycorrhizal fungi for bioremediation. In: Gianinazzi S, Schuepp H, Barea JM, Haselwandter K (eds) Mycorrhizal technology in agriculture. Birkhauser-Verlag, Basel, pp 175–186

    Chapter  Google Scholar 

  • Li Y, Zhu G, Ng WJ, Tan SK (2014) A review on removing pharmaceutical contaminants from wastewater by constructed wetlands: design, performance and mechanism. Sci Total Environ 468–469:908–932

    Article  CAS  Google Scholar 

  • Maine MA, Sune N, Hadad H, Sanchez G, Bonetto C (2006) Nutrient and metal removal in a constructed wetland for waste-water treatment from a metallurgic industry. Ecol Eng 26:341–347

    Article  Google Scholar 

  • Manning BA, Fendorf SE, Goldberg S (1998) Surface structures and stability of arsenic(III) on goethite: spectroscopic evidence for inner-sphere complexes. Environ Sci Technol 32:2383–2388

    Article  CAS  Google Scholar 

  • Marchand L, Mench M, Jacob DL, Otte ML (2010) Metal and metalloid removal in constructed wetlands, with emphasis on the importance of plants and standardized measurements: a review. Environ Pollut 158:3447–3461

    Article  CAS  Google Scholar 

  • Martiny JBH, Bohannan BJM, Brown JH, Colwell RK, Fuhrman JA, Green JL et al (2006) Microbial biogeography: putting microorganisms on the map. Nature Rev 4:102–112

    CAS  Google Scholar 

  • Mastretta C, Taghavi S, van der Lelie D, Mengoni A, Galardi F, Gonnelli C, Barac T, Boulet J, Weyens N, Vangronsveld J (2009) Endophytic bacteria from seeds of Nicotiana tabacum can reduce cadmium phytotoxicity. Int J Phytoremediation 11:251–267

    Article  CAS  Google Scholar 

  • Matagi SV (1998) Environmental Technology Assessment in Uganda. A country Synopsis. In: Environmental Technology Assessment (EnTA) in Sub-Saharan Africa, UNEP-IETC Report 3, Osaka/Shiga, pp 259–277

    Google Scholar 

  • Matagi SV, Swai D, Maine MA, Sune N, Hadad H, Sanchez G, Bonetto C (1998) Nutrient and metal removal in a constructed wetland for waste-water treatment from a metallurgic industry. Ecol Eng 26:341–347

    Google Scholar 

  • Matamoros V, Boyona JM (2006) Elimination of pharmaceuticals and personal care products in subsurface flow constructed wetlands. Environ Sci Technol 40(18):5811–5816

    Article  CAS  Google Scholar 

  • Mbuligwe SE (2005) Comparative treatment of dye-rich wastewater in engineered wetland systems (EWSs) vegetated with different plants. Water Res 39:271–280

    Article  CAS  Google Scholar 

  • Mishra VK, Tripathi BD (2008) Concurrent removal and accumulation of heavy metals by the three aquatic macrophytes. Bioresour Technol 99:7091–7097

    Article  CAS  Google Scholar 

  • Mitchell DS (1976) The growth and management of Eichhornia crassipes and Salvinia spp. in their native environment and in alien situation

    Google Scholar 

  • Mitsch WJ, Gosselink JG (2007) Wetlands, 4th edn. Wiley, New York

    Google Scholar 

  • Mitsch WJ, Jorgensen SE (2003) Ecological engineering: a field whose time has come. Ecol Eng 20(5):363–377

    Article  Google Scholar 

  • Mitsch WJ, Tejada J, Nahlik A, Kohlmann B, Bernala B, Hernandez CE (2008) Tropical wetlands for climate change research, water quality management and conservation education on a university campus in Costa Rica. Ecol Eng 34(4):276–288

    Article  Google Scholar 

  • Molinos-Senante M, Reif R, Garrido-Baserba M, Hernández-Sancho F, Omil F, Poch M et al (2013) Economic valuation of environmental benefits of removing pharmaceutical and personal care products from WWTP effluents by ozonation. Sci Total Environ 461–462:409–415

    Article  CAS  Google Scholar 

  • Mueller JG, Resnick SM, Shelton ME, Pritchard PH (1992) Effect of inoculation on the biodegradation of weathered Prudhoe Bay crude oil. J Ind Microbiol Biotechnol 10(2):95–102

    Google Scholar 

  • Murray-Gulde CL, Huddleston GM, Garber KV, Rodgers JH (2005) Contributions of Schoenoplectus californicus in a constructed wetland system receiving copper contaminated wastewater. Water Air Soil Pollut 163:355–378

    Article  CAS  Google Scholar 

  • Nilratnisakorn S, Thiravetyan P, Nakbanpote W (2009) A constructed wetland model for synthetic reactive dye wastewater treatment by narrow-leaved cattails (Typha angustifolia Linn). Water Sci Technol 60(6):1565–1574

    Article  CAS  Google Scholar 

  • Nyquist J, Greger M (2009) A field study of constructed wetlands for preventing and treating acid mine drainage. Ecol Eng 35(5):630–642

    Article  Google Scholar 

  • Olejnik D, Wojciechowski K (2012) The conception of constructed wetland for dyes removal in water solutions. Chemik 66(6):611–614

    CAS  Google Scholar 

  • Oliveira RS, Dodd JC, PML C (2001) The mycorrhizal status of Phragmites australis in several polluted soils and sediments of an industrialised region of Northern Portugal. Mycorrhiza 10:241–247

    Article  CAS  Google Scholar 

  • Philippot L, Hallin S (2005) Finding the missing link between diversity and activity using denitrifying bacteria as a model functional community. Curr Opin Microbiol 8:234–239

    Article  CAS  Google Scholar 

  • Reche I, Pulido-Villena E, Morales-Baquero R, Casamayor EO (2005) Does ecosystem size determine aquatic bacterial richness? Ecology 86:1715–1722

    Article  Google Scholar 

  • Rehm HJ, Reed G (1999) Biotechnology: environmental processes I; waste water treatment. Wiley, Weinheim

    Book  Google Scholar 

  • Rew S, Mulamoottil GA (1999) A cost comparison of leachate treatment alternatives. In: Mulamoottil G, McBean EA, Rovers F (eds) Constructed wetlands for the treatment of landfill leachates. Lewis, Boca Raton

    Google Scholar 

  • Rich JJ, Myrold DD (2004) Community composition and activities of denitrifying bacteria from adjacent agricultural soil, riparian soil, and creek sediment in Oregon, USA. Soil Biol Biochem 36:1431–1441

    Article  CAS  Google Scholar 

  • Ridgeway HF, Safarik J, Phipps D, Carl P, Clark D (1990) Identification and catabolic activity of well-derived gasoline-degrading bacteria and a contaminated aquifer. Appl Environ Microbiol 56(11):3565–3575

    Google Scholar 

  • Ryan PR, Delhaize E, Jones DL (2001) Function of mechanism of organic acid exudation from plant roots. Annu Rev Plant Physiol Plant Mol Biol 52:527–560

    Article  CAS  Google Scholar 

  • Sachin MK, Gaikwad RW, Misal SA (2010) Low cost sugarcane bagasse ash as an adsorbent for dye removal from dye effluent. Int J Chem Eng Appl 1(4):309–318

    Google Scholar 

  • Saxena G, Bharagava RN (2015) Persistent organic pollutants and bacterial communities present during the treatment of tannery wastewater. In: Chandra R (ed) Environmental waste management, 1st edn. CRC Press/Taylor & Francis, Boca Raton, pp 217–247. https://doi.org/10.1201/b19243-10

    Chapter  Google Scholar 

  • Saxena G, Bharagava RN (2017) Organic and inorganic pollutants in industrial wastes, their ecotoxicological effects, health hazards and bioremediation approaches. In: Bharagava RN (ed) Environmental pollutants and their bioremediation approaches, 1st edn. CRC Press/Taylor & Francis, Boca Raton, pp 23–56. https://doi.org/10.1201/9781315173351-3

    Chapter  Google Scholar 

  • Saxena G, Chandra R, Bharagava RN (2016) Environmental pollution, toxicity profile and treatment approaches for tannery wastewater and its chemical pollutants. Rev Environ Contam Toxicol 240:31–69. https://doi.org/10.1007/398_2015_5009

    Article  CAS  Google Scholar 

  • Saxena G, Purchase D, Mulla SI, Saratale GD, Bharagava RN (2019) Phytoremediation of heavy metal-contaminated sites: eco-environmental concerns, field studies, sustainability issues and future prospects. Rev Environ Contam Toxicol. https://doi.org/10.1007/398_2019_24

    Google Scholar 

  • Schmitt H, Haapakangas H, van Beelen P (2005) Effects of antibiotics on soil microorganisms: time and nutrients influence pollution- induced community tolerance. Soil Biol Biochem 37:1882–1892

    Article  CAS  Google Scholar 

  • Scholz M, Harrington R, Carroll P, Mustafa A (2007) The Integrated Constructed Wetlands (ICW) concept. Wetlands 27(2):337–354

    Article  Google Scholar 

  • Seo DC, Yu K, DeLaune RD (2008) Comparison of monometal and multimetal adsorption in Mississippi River alluvial wetland sediment: batch and column experiments. Chemosphere 73:1757–1764

    Article  CAS  Google Scholar 

  • Shade A, Jones SE, McMahon KD (2008) The influence of habitat heterogeneity on freshwater bacterial community composition and dynamics. Environ Microbiol 10:1057–1067

    Article  CAS  Google Scholar 

  • Sheoran AS, Sheoran V (2006) Heavy metal removal mechanism of acid mine drainage in wetlands – a critical review. Miner Eng 19:105–116

    Article  CAS  Google Scholar 

  • Song Z, Williams CJ, Edyvean RGJ (2000) Sedimentation of tannery wastewater. Water Res 34(7):2171–2176

    Article  CAS  Google Scholar 

  • Song B, Ward BB (2003) Nitrite reductase genes in halobenzoate degrading denitrifying bacteria. FEMS Microbiol Ecol 43:349–357

    Article  CAS  Google Scholar 

  • Spence JM, Bottrell SH, Thornton SF, Richnow HH, Spence KH (2005) Hydrochemical and isotopic effects associated with petroleum fuel biodegradation pathways in a chalk aquifer. J Contam Hydrol 79(1–2):67–88

    Article  CAS  Google Scholar 

  • Stephenson MT (1992) A survey of produced water studies. In: Ray JP, Englehart FR (eds) Produced water. Plenum Press, New York

    Google Scholar 

  • Stoltz E, Greger M (2005) Effects of different wetland plant species on fresh unweathered sulphidic mine tailings. Plant Soil 276:251–261

    Article  CAS  Google Scholar 

  • Stottmeister U, Wiessner A, Kuschk P, Kappelmeyer U, Kastner M, Bederski O, Muller RA, Moormann H (2003) Effects of plants and microorganisms in constructed wetlands for wastewater treatment. Biotechnol Adv 22(3):93–117

    Article  CAS  Google Scholar 

  • Sugai SF, Lindstrom JE, Braddock JF (1997) Environmental influences on the microbial degradation of Exxon Valdez oil on the shorelines of Prince William Sound, Alaska. Environ Sci Technol 31(5):1564–1572

    Article  CAS  Google Scholar 

  • Tatum CK (2015) A review on the use of constructed wetlands as secondary wastewater treatment for the removal of pharmaceuticals and personal care products. Master thesis, North Carolina

    Google Scholar 

  • Trapp S, Karlson U (2001) Aspects of phyto remediation of organic pollutants. J Soils Sediments 1:37–43

    Article  CAS  Google Scholar 

  • Ulsido MD (2014) Performance evaluation of constructed wetlands: a review of arid and semi arid climatic region. Afr J Environ Sci Technol 8(2):99–106

    Article  Google Scholar 

  • UNEP (2004) Integrated watershed management- ecohydrology and phytotechnology manual. Online at: www.unep.or.jp/ietc/publications/freshwater/watershed_manual/index.asp

  • USEPA (2000) Constructed wetlands treatment of municipal wastewater. United States (US) Environmental Protection Agency (EPA), Office of Research and Development, Cincinnati, OH, USA

    Google Scholar 

  • Uslu MO, Jasim S, Arvai A, Bewtra J, Biswas N (2013) A survey of occurrence and risk assessment of pharmaceutical substances in the Great Lakes Basin. Ozone Sci Eng 35:249–262

    Article  CAS  Google Scholar 

  • Verlicchi P, Zambello E (2014) How efficient are constructed wetlands in removing pharmaceuticals from untreated and treated urban wastewaters? A review. Sci Total Environ 470–471:1281–1306

    Article  CAS  Google Scholar 

  • Vymazal J, Brix H, Cooper PF, Green MB, Haberl R (1998) Constructed wetlands for wastewater treatment in Europe. Backhuys Publishers, Leiden, p 366

    Google Scholar 

  • Vymazal J, Svehla J, Kropfelova L, Chrastny V (2007) Trace metals in Phragmites australis and Phalaris arundinacea growing in constructed and natural wetlands. Sci Total Environ 380:154–162

    Article  CAS  Google Scholar 

  • Walker DJ, Hurl S (2002) The reduction of heavy metals in a storm water wetland. Ecol Eng 18:407–414

    Article  Google Scholar 

  • Wallace SD (2001) Onsite remediation of petroleum contact wastes using subsurface flow wetlands. In: Proceedings of wetlands and remediation: the second international conference, 5–6 September 2001. Battelle Institute, Columbus, Ohio

    Google Scholar 

  • Wallace SD, Knight RL (2006) Small-scale constructed treatment systems: feasibility, design criteria, and O&M requirements. Final report, Project 01-CTS-5. Water Environment Research Foundation, Alexandria, Virginia

    Google Scholar 

  • Wallenstein MD, Myrold DD, Firestone M, Voytek M (2006) Environmental controls on denitrifying communities and denitrification rates: insights from molecular methods. Ecol Appl 16:2143–2152

    Article  Google Scholar 

  • Weber KP, Gehder M, Legge RL (2008) Assessment of changes in the microbial community of constructed wetland mesocosms in response to acid mine drainage exposure. Water Res 42(1–2):180–188

    Article  CAS  Google Scholar 

  • Weisner SEB, Eriksson PG, Granéli W, Leonardsson L (1994) Influence of macrophytes on nitrate removal in wetlands. Ambio 23:363–366

    Google Scholar 

  • Wemple C, Hendricks L (2000) Documenting the recovery of hydrocarbon- impacted wetlands: a multi-disciplinary approach. In: Wetlands and remediation: an international conference, by Means JL and Hinchee RE. Battelle Press, Columbus, Ohio, USA, pp 73–78

    Google Scholar 

  • Wen Y, Su Li M, Qin WC, Fu L, He J, Zhao YH (2012) Linear and non-linear relationships between soil sorption and hydrophobicity: model, validation and influencing factors. Chemosphere 86(6):634–640

    Article  CAS  Google Scholar 

  • Wetzel RG (1993) Humic compounds from wetlands: complexation, inactivation, and reactivation of surfacebound and extracellular enzymes. Int Ver Theor Angew Limnol Verh 25:122–l 28

    CAS  Google Scholar 

  • Wetlands International – Malaysia Office (2013) The use of constructed wetlands for wastewater treatment. Selangor, Malaysia. Online at: http://www.wetlands.org/WatchRead/Currentpublications/tabid/56/ArticleType/ArticleView/ArticleID/1369/PageID/550/Default.aspx

  • White JR, Belmont M, Metcalfe C (2006) Pharmaceutical compounds in wastewater: wetland treatment as a potential solution. Sci World J 6:1731–1736

    Article  CAS  Google Scholar 

  • Yang Y, Fu J, Peng H, Hou L, Liu M, Zhou JL (2011) Occurrence and phase distribution of selected pharmaceuticals in the Yangtze Estuary and its coastal zone. J Hazard Mater 190:588–596

    Article  CAS  Google Scholar 

  • Ye SH, Huang LC, Li YO, Ding M, Hu YY, Ding DW (2006) Investigation on bioremediation of oil-polluted wetland at Liaodong Bay in northeast China. Appl Microbiol Biotechnol 71(4):543–548

    Article  CAS  Google Scholar 

  • Zayed A, Growthaman S, Terry N (1998) Phytoaccumulation of trace elements by wetland plants. I Duckweed. J Environ Qual 27:715–721

    Article  CAS  Google Scholar 

  • Zhang L, Scholz M, Mustafa A, Harrington R (2008) Assessment of the nutrient removal performance in integrated constructed wetlands with the self-organizing map. Water Res 42(13):3519–3527

    Article  CAS  Google Scholar 

  • Zhang H, Liu P, Feng Y, Yang F (2013) Fate of antibiotics during wastewater treatment and antibiotic distribution in the effluent-receiving waters of the Yellow Sea, northern China. Mar Pollut Bull 73:282–290

    Article  CAS  Google Scholar 

  • Zhang DQ, Gersberg RM, Ng WJ, Tan SK (2014) Removal of pharmaceuticals and personal care products in aquatic plant-based systems: a review. Environ Pollut 184:620–639

    Article  CAS  Google Scholar 

  • Zhou E, Crawford RL (1995) Effects of oxygen, nitrogen, and temperature on gasoline biodegradation in soil. Biodegradation 6(2):127–140

    Article  CAS  Google Scholar 

  • Zhu S, Chen H (2014) The fate and risk of selected pharmaceutical and personal care products in wastewater treatment plants and a pilot-scale multistage constructed wetland system. Environ Sci Pollut Res 21(2):1466–1479

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors of this chapter are tremendously grateful to the Higher Education Commission, Islamabad, University of Peshawar and National Center of Excellence in Geology, University of Peshawar for financial support.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khan, S., Nawab, J., Waqas, M. (2020). Constructed Wetlands: A Clean-Green Technology for Degradation and Detoxification of Industrial Wastewaters. In: Bharagava, R., Saxena, G. (eds) Bioremediation of Industrial Waste for Environmental Safety. Springer, Singapore. https://doi.org/10.1007/978-981-13-3426-9_6

Download citation

Publish with us

Policies and ethics