Skip to main content

Phycoremediation: Algae as Eco-friendly Tools for the Removal of Heavy Metals from Wastewaters

  • Chapter
  • First Online:
Book cover Bioremediation of Industrial Waste for Environmental Safety

Abstract

Phycoremediation is a potential tool to eradicate the excess toxics (heavy metal and organic contaminants) from the industrial waste stream. The algal species are a promising, eco-friendly, and sustainable move toward a possible advantage to enhance the algal cultivation which in turn magnifies the economics of algal-based value-added products. Therefore, algae have been documented as a sustainable and inexpensive vector for detoxification of noxious waste-loaded industrial waste stream. Algal species may bind up to 10% of their biomass as metals. Various physical and chemical methods used for this purpose suffer from serious limitations like high cost, high energy input, alteration of basic properties, and disturbance in native flora. In contrast, phycoremediation provides a new insight/dimension for this problem by perceiving it as cost-effective, efficient, novel, eco-friendly, and solar-driven technology with good public acceptance. The mechanism for the removal of heavy metal through alga works on the principle of adsorption onto the cell surface which is independent of cell metabolism and absorption or intracellular uptake which depends on cell metabolism. So, their ability to adsorb and metabolize is associated with their large surface/volume ratios; the presence of high-affinity, metal-binding groups on their cell surfaces; and efficient metal uptake and storage systems. Hence, the present review article deals with the basic mechanism of algal-based heavy metal removal strategies with the effect of physicochemical parameters. Use of transgenic approaches to further enhance the heavy metal specificity and binding capacity of algae with the objective of using these algae for the treatment of heavy metal-contaminated wastewater is also focused in this article.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahalya N, Ramachandra TV, Kanamadi RD (2003) Biosorption of heavy metals. Res J Chem Environ 7:71–78

    CAS  Google Scholar 

  • Ahmad S, Pandey A, Kothari R, Pathak VV, Tyagi VV(2017) Closed photobioreactors: construction material and influencing parameters at the commercial scale. In: Photobioreactors advancement application and research. NOVA publication, pp149–162

    Google Scholar 

  • Ahmad S, Pathak VV, Kothari R, Kumar A, Krishna SBN (2018) Optimization of nutrient stress using C. pyrenoidosa for lipid and biodiesel production in integration with remediation in dairy industry wastewater using response surface methodology. 3 Biotech 8(8):326

    Article  Google Scholar 

  • Ajayan KV, Selvaraju M, Thirugnanamoorthy K (2011) Growth and heavy metals accumulation potential of microalgae grown in sewage wastewater and Petrochemical Effluents. Pakistan J Biol Sci 14(16):805–811

    Article  CAS  Google Scholar 

  • Akhtar N, Iqbal J, Iqbal M (2004) Removal and recovery of nickel (II) from aqueous solution by loofa sponge-immobilized biomass of Chlorella sorokiniana: characterization studies. J Hazard Mater 108(1–2):85–94

    Article  CAS  Google Scholar 

  • Akhtar N, Iqbal M, Zafar SI, Iqbal J (2008) Biosorption characteristics of unicellular green alga Chlorella sorokiniana immobilized in loofa sponge for removal of Cr (III). J Environ Sci 20:231–239

    Article  CAS  Google Scholar 

  • Aksu Z (2001) Equilibrium and kinetic modeling of cadmium (II) biosorption by C. vulgaris in a batch system: effect of temperature. Sep Purif Technol 21:285–294

    Article  CAS  Google Scholar 

  • Aksu Z, D€onmez G (2006) Binary biosorption of cadmium (II) and nickel (II) onto dried Chlorella vulgaris: co-ion effect on mono-component isotherm parameters. Process Biochem 41(4):860–868

    Article  CAS  Google Scholar 

  • Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals-concepts and applications. Chemosphere 91(7):869–881

    Article  CAS  Google Scholar 

  • Arıca MY, Tüzün I, Yalçın E, Ince €O, BayramoGlu G (2005) Utilization of native, heat and acid-treated microalgae Chlamydomonas reinhardtii preparations for biosorption of Cr (VI) ions. Process Biochem 40(7):2351–2358

    Article  CAS  Google Scholar 

  • Ayansina SA, Olubukola OB (2017) A new strategy for heavy metal polluted environments: a review of microbial biosorbents. Int J Environ Res Public Health 14:94. https://doi.org/10.3390/ijerph14010094

    Article  CAS  Google Scholar 

  • Babel S, Kurniawan TA (2003) Low-cost adsorbents for heavy metals uptake from contaminated water: a review. J Hazard Mater 97:219–243

    Article  CAS  Google Scholar 

  • Barakat MA (2011) New trends in removing heavy metals from industrial wastewater. Arab J Chem 4:361–377

    Article  CAS  Google Scholar 

  • BayramoÄŸlu G, Tuzun I, Celik G, Yilmaz M, Arica MY (2006) Biosorption of mercury(II),cadmium(II) and lead(II) ions from aqueous system by microalgae Chlamydomonas reinhardtii immobilized in alginate beads. Int J Miner Process 81:35–43

    Article  CAS  Google Scholar 

  • Brinza L, Dring MJ, Gavrilescu M (2007) Marine micro and macro algal species as biosorbents for heavy metals. Environ Eng Manag J 6(3):237–251

    Article  CAS  Google Scholar 

  • Chojnacka K, Chojnacki A, Górecka H (2005) Biosorption of Cr3+, Cd2+ and Cu2+ ions by blue-green algae Spirulina sp.: kinetics, equilibrium and the mechanism of the process. Chemosphere 59:75–84

    Article  CAS  Google Scholar 

  • Chowdhury P, Elkamel A, Ray AK (2015) Photocatalytic processes for the removal of toxic metal ions. In: Sharma SK (ed) Heavy metals in water: presence, removal and safety. The Royal Society of Chemistry, Cambridge, UK, pp 25–43

    Google Scholar 

  • Cobbett C, Goldsbrough P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53:159–182

    Article  CAS  Google Scholar 

  • Da Costa ACA, de França FP (1998) The behavior of the microalgae Tetraselmis chuii in cadmium-contaminated solutions. Aquacult Int 6:57–66

    Article  Google Scholar 

  • David SD, Marina C, Jonatan UF, Maria Dalgaard M, Peter U, William GTW (2012) The cell walls of green algae: a journey through evolution and diversity. Front Plant Sci 3:82–81

    Google Scholar 

  • De-Bashan LE, Bashan Y (2010) Immobilized microalgae for removing pollutants: review of practical aspects. Bioresour Technol 101(6):1611–1627

    Article  CAS  Google Scholar 

  • Dominic VJ, Soumya M, Nisha MC (2009) Phycoremediation efficiency of three micro algae Chlorella Vulgaris, Synechocystis Salina and Gloeocapsa Gelatinosa. Acad Rev 16(1&2):138–146

    Google Scholar 

  • Dönmez GÇ, Aksu Z, Öztürk A, Kutsal T (1999) A comparative study on heavy metal biosorption characteristics of some algae. Process Biochem 34:885–892

    Article  Google Scholar 

  • Doshi H, Ray A, Kothari IL, Gami B (2006) Spectroscopic and scanning electron microscopy studies of bioaccumulation of pollutants by algae. Curr Microbiol 53(2):148–157

    Article  CAS  Google Scholar 

  • Doshi H, Ray A, Kothari IL (2007) Bioremediation potential of live and dead Spirulina: spectroscopic, kinetics and SEM studies. Biotechnol Bioeng 96(6):1051–1063

    Article  CAS  Google Scholar 

  • Doshi H, Seth C, Ray A, Kothari IL (2008) Bioaccumulation of heavy metals by green algae. Curr Microbiol 56:246–255

    Article  CAS  Google Scholar 

  • Dwivedi S, Srivastava S, Mishra S, Kumar A, Tripathi RD, Rai UN, Dave R, Tripathi P, Charkrabarty D, Trivedi PK (2010) Characterization of native microalga strains for their chromium bioaccumulation potential: phytoplankton response in polluted habitats. J Hazard Mater 173:95–101

    Article  CAS  Google Scholar 

  • El-Sikaily A, Nemr AE, Khaled A, Abdelwehab O (2007) Removal of toxic chromium from wastewater using green alga Ulva lactuca and its activated carbon. J Hazard Mater 148(1–2):216–228

    Article  CAS  Google Scholar 

  • Eroglu E, Smith S, Raston C (2015) Application of various immobilization techniques for algal bioprocesses. In: Moheimani NR, McHenry MP, de Boer K, Bahri PA (eds) Biomass and biofuels from microalgae. Springer, Cham, pp 19–44

    Google Scholar 

  • Ferreira LS, Rodrigues MS, Carlos MDCJ, Alessandra L, Elisabetta F, Patrizia P, Attilio C (2011) Adsorption of Ni2+, Zn2+ and Pb2+ onto dry biomass of Arthrospira (Spirulina) platensis and Chlorella vulgaris. I. Single metal systems. Chem Eng J 173:326–333

    Article  CAS  Google Scholar 

  • Gautam RK, Sharma SK, Mahiya S, Chattopadhyaya MC (2015) Contamination of heavy metals in aquatic media: transport, toxicity and technologies for remediation. In: Sharma SK (ed) Heavy metals in water: presence, removal and safety. The Royal Society of Chemistry, Cambridge, UK, pp 1–24

    Google Scholar 

  • Gokhale SV, Jyoti KK, Lele SS (2008) Kinetic and equilibrium modeling of chromium (VI) biosorption on fresh and spent Spirulina platensis/Chlorella vulgaris biomass. Bioresour Technol 99(9):3600–3608

    Article  CAS  Google Scholar 

  • Gupta V, Rastogi A (2008a) Biosorption of lead from aqueous solutions by green algae Spirogyra species: kinetics and equilibrium studies. J Hazard Mater 152:407–414

    Article  CAS  Google Scholar 

  • Gupta VK, Rastogi A (2008b) Equilibrium and kinetic modeling of cadmium(II) biosorption by nonliving algal biomass Oedogonium sp. from aqueous phase. J Hazard Mater 153:759–766

    Article  CAS  Google Scholar 

  • Hammud HH, El-Shaar A, Khamis E, Mansour ES (2014) Adsorption studies of lead by Enteromorpha algae and its silicates bonded material. Adv Chem:1–11

    Article  CAS  Google Scholar 

  • Han X, Wong YS, Tam NFY (2006) Surface complexation mechanism and modeling in Cr(III) biosorption by a microalgal isolate, Chlorella miniata. J Colloid Interface Sci 303:365–371

    Article  CAS  Google Scholar 

  • Hansen HK, Ribeiro A, Mateus E (2006) Biosorption of arsenic(V) with Lessonia nigrescens. Miner Eng 19:486–490

    Article  CAS  Google Scholar 

  • He J, Chen JP (2014) A comprehensive review on biosorption of heavy metals by algal biomass: materials, performances, chemistry, and modeling simulation tools. Bioresour Technol 160:67–78

    Article  CAS  Google Scholar 

  • Inthorna D, Sidtitoon N, Silapanuntakul S, Incharoensakdi A (2002) Sorption of mercury, cadmium and lead by microalgae. Sci Asia 28:253–261

    Article  Google Scholar 

  • Javadian H, Ahmadi M, Ghiasvand M, Kahrizi S, Katal R (2013) Removal of Cr(VI) by modified brown algae Sargassum bevanom from aqueous solution and industrial wastewater. J Taiwan Inst Chem Eng 4:977–989

    Article  CAS  Google Scholar 

  • Karthikeyan S, Balasubramanian R, Iyer CSP (2007) Evaluation of the marine algae Ulva fasciata and Sargassum sp. for the biosorption of Cu(II) from aqueous solutions. Bioresour Technol 98(2):452–455

    Article  CAS  Google Scholar 

  • Kothari R, Pathak VV, Kumar V, Singh DP (2012) Experimental study for growth potential of unicellular alga Chlorella pyrenoidosa on dairy waste water: an integrated approach for treatment and biofuel production. Bioresour Technol 116:466–470

    Article  CAS  Google Scholar 

  • Kothari R, Pandey A, Ahmad S, Kumar A, Pathak VV, Tyagi VV (2017) Microalgal cultivation for value-added products: a critical enviro-economical assessment. 3 Biotech 7(4):243

    Article  Google Scholar 

  • Kumar JIN, Oommen C (2012) Removal of heavy metals by biosorption using freshwater alga Spirogyra hyaline. J Environ Biol 33:27–31

    CAS  Google Scholar 

  • Kumar KS, Dahms HU, Won EJ, Lee JS, Shin KH (2015) Microalgae- a promising tool for heavy metal remediation. Ecotoxicol Environ Saf 113:329–352

    Article  CAS  Google Scholar 

  • Lee YC, Chang SP (2011) The biosorption of heavy metals from aqueous solution by Spirogyra and Cladophora filamentous macroalgae. Bioresour Technol 102(9):5297–5304

    Article  CAS  Google Scholar 

  • Lee HS, Suh JH, Kim IB, Yoon T (2004) Effect of aluminum in two-metal biosorption by an algal biosorbent. Min Eng 17(4):487–493

    Article  CAS  Google Scholar 

  • Lee H, Shim E, Yun HS, Park YT, Kim D, Ji MK, Kim CK, Shin WS, Choi J (2016) Biosorption of Cu (II) by immobilized microalgae using silica: kinetic, equilibrium, and thermodynamic study. Environ Sci Pollut Res 23(2):1025–1034

    Article  CAS  Google Scholar 

  • Lezcano JM, González F, Ballester A, Blázquez ML, Muñoz JA, García-Balboa C (2010) Biosorption of Cd(II), Cu(II), Ni(II), Pb(II) and Zn(II) using different residual biomass. Chem Ecol 26(1):1–17

    Article  CAS  Google Scholar 

  • Lopez BR, Hernandez JP, Bashan Y, de-Bashan LE (2017) Immobilization of microalgae cells in alginate facilitates isolation of DNA and RNA. J Microbiol Methods 135:96–104

    Article  CAS  Google Scholar 

  • Majumder S, Gupta S, Raghuvanshi S (2015) Removal of dissolved metals by bioremediation. In: Sharma SK (ed) Heavy metals in water: presence, removal and safety. The Royal Society of Chemistry, Cambridge, UK, pp 44–56

    Google Scholar 

  • Mane PC, Bhosle AB, Jangam CM (2011) Bioadsorption of selenium by Pretreated Algal Biomass Advances in applied. Sci Res 2(2):202–207

    CAS  Google Scholar 

  • Mata YN, Torres E, Blazquez ML, Ballester A, Gonzalez F, Munoz JA (2009) Gold(III) biosorption and bioreduction with the brown alga Fucus vesiculosus. J Hazard Mater 166(2–3):612–618

    Article  CAS  Google Scholar 

  • Maznah ZBS, Ismail M, Halimah (2012) Fate of thiram in an oil palm nursery during the wet season. J Oil Palm Res 24:1397–1403

    Google Scholar 

  • Mehta SK, Gaur JP (2001) Characterization and optimization of Ni and Cu sorption from aqueous solution by Chlorella vulgaris. Ecol Eng 18(1):1–13

    Article  Google Scholar 

  • Mehta SK, Gaur JP (2005) Use of algae for removing heavy metal ions from wastewater: progress and prospects. Crit Rev Biotechnol 25(3):113–152

    Article  CAS  Google Scholar 

  • Mehta S, Tripathi B, Gaur J (2002) Enhanced sorption of Cu2+ and Ni2+ by acid pretreated Chlorella vulgaris from single and binary metal solutions. J Appl Phycol 14(4):267–273

    Article  CAS  Google Scholar 

  • Misbah M, Samia S, Hafsa I, Uzair H, Alvina G (2014) Production of algal biomass. In: Biomass and bioenergy: processing and properties. Springer, Cham, pp 207–224. https://doi.org/10.1007/978-3-319-07641-6_13

    Chapter  Google Scholar 

  • Monteiro CM, Castro PML, Malcata FX (2009) Use of the microalga Scenedesmus obliquus to remove cadmium cations from aqueous solutions. World J Microbiol Biotechnol 25:1573–1578

    Article  CAS  Google Scholar 

  • Monteiro CM, Castro PML, Malcata FX (2010) Cadmium removal by two strains of Desmodesmus pleiomorphus cells. Water Air Soil Pollut 208:17–27

    Article  CAS  Google Scholar 

  • Monteiro CM, Castro PML, Malcata FX (2011) Capacity of simultaneous removal of zinc and cadmium from contaminated media, by two microalgae isolated from a polluted site. Environ Chem Lett 9(4):511–517

    Article  CAS  Google Scholar 

  • Monteiro CM, Castro PML, Malcata FX (2012) Metal uptake by microalgae: underlying mechanisms and practical applications. Biotechnol Prog 28(2):299–311

    Article  CAS  Google Scholar 

  • Mujtaba G, Lee K (2017) Treatment of real wastewater using co-culture of immobilized Chlorella vulgaris and suspended activated sludge. Water Res 120:174–184. https://doi.org/10.1016/j.watres.2017.04.078

    Article  CAS  Google Scholar 

  • Onyancha D, Mavura W, Ngila JC, Ongoma P, Chacha J (2008) Studies of chromium removal from tannery wastewaters by algae biosorbents, Spirogyra condensata and Rhizoclonium hieroglyphicum. J Hazard Mater 158(2–3):605–614

    Article  CAS  Google Scholar 

  • Ozer D, Ozer A, Dursun G (2000) Investigation of zinc (II) adsorption on Cladophora crispata in a two staged reactor. J Chem Technol Biotechnol 75(5):410–416

    Article  CAS  Google Scholar 

  • Parameswari E, Lakshmanan A, Thilagavathi T (2010) Phycoremediation of heavy metals in polluted waterbodies. Elec J Env Agricult Food Chem Title 9(4):808–814

    CAS  Google Scholar 

  • Pathak VV, Kothari R, Chopra AK, Singh DP (2015) Experimental and kinetic studies for phycoremediation and dye removal by Chlorella pyrenoidosa from textile wastewater. J Environ Manag 163:270–277

    Article  CAS  Google Scholar 

  • Pathak VV, Ahmad S, Kothari R (2019) Implication of algal microbiology for wastewater treatment and bioenergy production. In: Environmental biotechnology: for sustainable future. Springer, Singapore, pp 263–286

    Chapter  Google Scholar 

  • Perpetuo EA, Souza CB, Nascimento CAO (2011) Engineering bacteria for bioremediation. In: Carpi A (ed) Progress in molecular and environmental bioengineering from analysis and modeling to technology applications. InTech Publishers, Rijeka, pp 605–632

    Google Scholar 

  • Plaza CJ, Viera M, Donati E, Guibal E (2013) Zinc and cadmium removal by biosorption on Undaria pinnatifida in batch and continuous processes. J Environ Manag 129:423–434

    Article  CAS  Google Scholar 

  • Praepilas D, Pakawadee K (2011) Effects of wastewater strength and salt stress on microalgal biomass production and lipid accumulation. World Acad Sci Eng Technol 60:1163–1168

    Google Scholar 

  • Priyadarshani I, Sahu D, Rath B (2011) Microalgal bioremediation: current practices and perspectives. J Biochem Technol 3(3):299–304

    CAS  Google Scholar 

  • Rangsayatorn N, Pokethitiyook P, Upatham ES, Lanza GR (2004) Cadmium biosorption by cells of Spirulina platensis TISTR 8217 immobilized in alginate and silica gel. Environ Int 30:57–63

    Article  CAS  Google Scholar 

  • Rincon J, Gonzalez F, Ballester A, Blazquez ML, Munoz JA (2005) Biosorption of heavy metals by chemically-activated alga Fucus vesiculosus. J Chem Technol Biotechnol 80(12):1403–1407

    Article  CAS  Google Scholar 

  • Ritixa P, Monika C (2013) Effect of pH and temperature on the biosorption of heavy metals by Bacillus licheniformis. Int J Sci Res:2319–7064

    Google Scholar 

  • Romera E, Gonzalez F, Ballester A, Blazquez ML, Munoz JA (2006) Biosorption with algae: a statistical review. Crit Rev Biotechnol 26(4):223–235

    Article  CAS  Google Scholar 

  • Romera E, Gonzalez F, Ballester A, Blazquez ML, Munoz JA (2007) Comparative study of biosorption of heavy metals using different types of algae. Bioresour Technol 98(17):3344–3353

    Article  CAS  Google Scholar 

  • Sandau E, Sandau P, Pulz O, Zimmermann M (1996) Heavy metal sorption by marine algae and algal by-products. Acta Biotechnol 16(2–3):103–119

    Article  CAS  Google Scholar 

  • Sargın I, Arslan G, Kaya M (2016) Efficiency of chitosan–algal biomass composite microbeads at heavy metal removal. React Funct Polym 98:38–47

    Article  CAS  Google Scholar 

  • Sbihi K, Cherifi O, El Gharmali A, Oudra B, Aziz F (2012) Accumulation and toxicological effects of cadmium, copper and zinc on the growth and photosynthesis of the freshwater diatom Planothidium lanceolatum (Brébisson) Lange-Bertalot: a laboratory study. J Mater Environ Sci 3(3):497–506

    CAS  Google Scholar 

  • Schmitt D, Müller A, Csögör Z, Frimmel FH, Posten C (2001) The adsorption kinetics of metal ions onto different microalgae and siliceous earth. Water Res 35(3):779–785

    Article  CAS  Google Scholar 

  • Singh S, Pradhan S, Rai LC (1998) Comparative assessment of Fe3þ and Cu2þ biosorption by field and laboratory grown Microcystis. Process Biochem 33(5):495–504

    Article  CAS  Google Scholar 

  • Singh A, Mehta SK, Gaur JP (2007) Removal of heavy metals from aqueous solution by common freshwater filamentous algae. World J Microbiol Biotechnol 23:1115–1120

    Article  CAS  Google Scholar 

  • Sjahrul M, Arifin D (2012) Phytoremediation of Cd2+ by Marine Phytoplanktons, Tetraselmis chuii and Chaetoceros calcitrans. Int J Chem 4(1):69–74

    Article  CAS  Google Scholar 

  • SrinivasaRao P, Kalyani S, Suresh Reddy KVN, Krishnaiah A (2005) Comparison of biosorption of nickel (II) and copper (II) ions from aqueous solution by Sphaeroplea Algae and Acid Treated Sphaeroplea Algae. Sep Sci Technol 40(15):3149–3165

    Article  CAS  Google Scholar 

  • Tiantian Z, Lihua C, Xinhua X, Lin Z, Huanlin C (2011) Advances on heavy metal removal from aqueous solution by algae. Prog Chem 23(8):1782–1794

    Google Scholar 

  • Tien CJ, Sigee DC, White KN (2005) Copper adsorption kinetics of cultured algal cells and freshwater phytoplankton with emphasis on cell surface characteristics. J Appl Phycol 17:379–389

    Article  CAS  Google Scholar 

  • Tuzen M, Sari A (2010) Biosorption of selenium from aqueous solution by green algae (Cladophora hutchinsiae) biomass: equilibrium, thermodynamic and kinetic studies. Chem Eng J 158(2):200–206

    Article  CAS  Google Scholar 

  • Tüzün I, Bayramoglu G, Yalçın E, Basaran G, Çelik G, Arıca MY (2005) Equilibrium and kinetic studies on biosorption of Hg (II), Cd (II) and Pb (II) ions onto microalgae Chlamydomonas reinhardtii. J Environ Manag 77(2):85–92

    Article  CAS  Google Scholar 

  • Ungureanu G, Santos S, Boaventura R, Botelho C (2015) Biosorption of antimony by brown algae S. muticum and A. nodosum. Environ Eng Manag J 14:455–463

    Article  CAS  Google Scholar 

  • Valls M, de Lorenzo V (2002) Exploiting the genetic and biochemical capacities of bacteria for the remediation of heavy metal pollution. FEMS Microbiol Rev. 26(4):327–338

    Article  CAS  Google Scholar 

  • Vogel M, Gunther A, Rossberg A, Li B, Bernhard G, Raff J (2010) Biosorption of U(VI) by the green algae Chlorella vulgaris in dependence of pH value and cell activity. Sci Total Environ 409(2):384–395

    Article  CAS  Google Scholar 

  • Wang L, Zhang J, Zhao R, Li Y, Li C, Zhang C (2010) Adsorption of Pb(II) on activated carbon prepared from Polygonum orientale Linn.: kinetics, isotherms, pH, and ionic strength studies. Bioresour Technol 101(15):5808–5814

    Article  CAS  Google Scholar 

  • Wang S, Vincent T, Roux JC, Faur C, Guibal E (2017) Pd (II) and Pt (IV) sorption using alginate and algal based beads. Chem Eng J 313(1):567–579

    Article  CAS  Google Scholar 

  • Wong JPK, Wong YS, Tam NFY (2000) Nickel biosorption by two chlorella species, C. vulgaris (a commercial species) and C. miniata (a local isolate). Bioresour Technol 73(2):133–137

    Article  CAS  Google Scholar 

  • Yalçın S, Sezer S, Apak R (2012) Characterization and lead(II), cadmium(II), nickel(II) biosorption of dried marine brown macro algae Cystoseira barbata. Environ Sci Pollut Res 19:3118–3125

    Article  CAS  Google Scholar 

  • Yan H, Pan G (2002) Toxicity and bioaccumulation of copper in three green microalgal species. Chemosphere 49:471–476

    Article  CAS  Google Scholar 

  • Yaqub A, Mughal M, Adnan A, Khan W, Anjum K (2012) Biosorption of hexavalent chromium by Spirogyra sp.: equilibrium, kinetics and thermodynamics. J Anim Plant Sci 22(2):408–415

    CAS  Google Scholar 

  • Zeroual Y, Moutaouakkil A, ZohraDzairi F, Talbi M, Ung Chung P, Lee K, Blaghen M (2003) Biosorption of mercury from aqueous solution by Ulva lactuca biomass. Bioresour Technol 90(3):349–351

    Article  CAS  Google Scholar 

  • Zhang M, Gao B, Jin J (2015) Use of nanotechnology against heavy metals present in water. In: Sharma SK (ed) Heavy metals in water: presence, removal and safety. The Royal Society of Chemistry, Cambridge, UK, pp 177–192

    Google Scholar 

  • Zhang X, Zhao X, Wan C, Chen B, Bai F (2016) Efficient biosorption of cadmium by the self-flocculating microalga Scenedesmus obliquus AS-6-1. Algal Res 16:427–433

    Article  Google Scholar 

  • Zhou YF, Haynes RJ (2010) Sorption of heavy metals by inorganic and organic components of solid wastes: significance to use of wastes as low-cost adsorbents and immobilizing agents. Crit Rev Environ Sci Technol 40:909–977

    Article  CAS  Google Scholar 

  • Zvinowanda CM, Okonkwo JO, Shabalala PN, Agyei NM (2009) A novel adsorbent for heavy metal remediation in aqueous environments. Int J Environ Sci Technol 6(3):425–434

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Authors want to acknowledge the University Grants Commission for the necessary support in the accomplishment of the present work.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ahmad, S., Pandey, A., Pathak, V.V., Tyagi, V.V., Kothari, R. (2020). Phycoremediation: Algae as Eco-friendly Tools for the Removal of Heavy Metals from Wastewaters. In: Bharagava, R., Saxena, G. (eds) Bioremediation of Industrial Waste for Environmental Safety. Springer, Singapore. https://doi.org/10.1007/978-981-13-3426-9_3

Download citation

Publish with us

Policies and ethics