Skip to main content

The IITM Earth System Model (ESM): Development and Future Roadmap

  • Chapter
  • First Online:
Current Trends in the Representation of Physical Processes in Weather and Climate Models

Abstract

This article provides a brief account of the development of the IITM Earth System Model (IITM-ESM) at the Centre for Climate Change Research, Indian Institute of Tropical Meteorology, in order to address key questions pertaining to the science of Climate Change. The IITM-ESM has been developed by transforming a state-of-the-art seasonal prediction model into a radiatively balanced climate modeling framework suitable for investigating long-term climate variability and change. The IITM-ESM is the first climate model from India to contribute to the Coupled Modeling Intercomparison Programme—Phase 6 (CMIP6) for the Intergovernmental Panel for Climate Change (IPCC) sixth assessment report (AR6). The IITM-ESM has shown promising capabilities required for making reliable assessments of the impacts of climate change on the (a) Global and regional monsoon hydroclimate, (b) Regional weather and climate extremes, (c) Global and Indian Ocean sea level, (d) Marine primary productivity and mechanisms controlling the ocean carbon cycle, and (e) Global and Himalayan cryosphere, to name a few important ones. Future plans for the development of high-resolution climate change projections and the next-generation community version of the IITM-ESM are also briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abhik, S., R.P.M. Krishna, M. Mahakur, M. Ganai, P. Mukhopadhyay, and J. Dudhia. 2017. Revised cloud processes to improve the mean and intraseasonal variability of Indian summer monsoon in climate forecast system: Part 1. Journal of Advances in Modeling Earth Systems 9: 1–28. https://doi.org/10.1002/2016MS000819.

    Article  Google Scholar 

  • Bollasina, M.A., Y. Ming, and V. Ramaswamy. 2011. Anthropogenic aerosols and the weakening of the South Asian Summer Monsoon. Science 334 (6055): 502–505. https://doi.org/10.1126/science.1204994.

    Article  Google Scholar 

  • Ek, M.B., K.E. Mitchell, Y. Lin, E. Rogers, P. Grunmann, V. Koren, and J.D. Tarpley. 2003. Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. Journal of Geophysical Research: Atmospheres 108 (D22): n/a-n/a. https://doi.org/10.1029/2002JD003296.

    Article  Google Scholar 

  • Fiedler, B.H. 2000. Dissipative heating in climate models. Quarterly Journal of the Royal Meteorological Society 126 (564): 925–939. https://doi.org/10.1256/smsqj.56407.

    Article  Google Scholar 

  • Flato, G., J. Marotzke, B. Abiodun, P. Braconnot, S. C. Chou, W. Collins, and M. Rummukainen. 2013. Evaluation of climate models. Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 741–866. https://doi.org/10.1017/CBO9781107415324.

    Google Scholar 

  • Forster, P.M., T. Andrews, P. Good, J.M. Gregory, L.S. Jackson, and M. Zelinka. 2013. Evaluating adjusted forcing and model spread for historical and future scenarios in the CMIP5 generation of climate models. Journal of Geophysical Research: Atmospheres 118 (3): 1139–1150. https://doi.org/10.1002/jgrd.50174.

    Article  Google Scholar 

  • Ganai, M., R. Phani Murali Krishna, P. Mukhopadhyay, and M. Mahakur. 2015. The impact of revised simplified Arakawa-Schubert scheme on the simulation of mean and diurnal variability associated with active and break phases of Indian summer monsoon using CFSv2. Journal of Geophysical Research Atmospheres 9301–9323. https://doi.org/10.1002/2014JD021636.

    Google Scholar 

  • Griffies, S.M., M. Schmidt, and M. Herzfeld. 2009. Elements of mom4p1. GFDL Ocean Group Technical Report 6, 444 pp. http://data1.gfdl.noaa.gov/~arl/pubrel/r/mom4p1/src/mom4p1/doc/guide4p1.pdf.

  • Han, J., and H.-L. Pan. 2011. Revision of convection and vertical diffusion schemes in the NCEP global forecast system. Weather and Forecasting 26 (4): 520–533. https://doi.org/10.1175/WAF-D-10-05038.1.

    Article  Google Scholar 

  • Han, J., M.L. Witek, J. Teixeira, R. Sun, H.-L. Pan, J.K. Fletcher, and C.S. Bretherton. 2016. Implementation in the NCEP GFS of a hybrid eddy-diffusivity mass-flux (EDMF) boundary layer parameterization with dissipative heating and modified stable boundary layer mixing. Weather and Forecasting 31 (1): 341–352. https://doi.org/10.1175/WAF-D-15-0053.1.

    Article  Google Scholar 

  • IPCC, 2013. Climate Change 2013. The Physical Science Basis. In Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, ed. Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., 1535 pp. , United Kingdom and New York, NY, USA: Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9781107415324.

    Google Scholar 

  • Khodri, M., T. Izumo, J. Vialard, S. Janicot, C. Cassou, M. Lengaigne, and M.J. McPhaden. 2017. Tropical explosive volcanic eruptions can trigger El Ninõ by cooling tropical Africa. Nature Communications 8(1): 1–12. https://doi.org/10.1038/s41467-017-00755-6.

  • Kitoh, A. 2017. The Asian monsoon and its future change in climate models: A review. 95. https://doi.org/10.2151/jmsj.2017-002.

    Article  Google Scholar 

  • Kitoh, A., and S. Kusunoki. 2008. East Asian summer monsoon simulation by a 20-km mesh AGCM. Climate Dynamics 31 (4): 389–401. https://doi.org/10.1007/s00382-007-0285-2.

    Article  Google Scholar 

  • Krishnan, R., T.P. Sabin, D.C. Ayantika, A. Kitoh, M. Sugi, H. Murakami, and K. Rajendran. 2013. Will the South Asian monsoon overturning circulation stabilize any further? Climate Dynamics 40(1–2): 187–211. https://doi.org/10.1007/s00382-012-1317-0.

    Article  Google Scholar 

  • Krishnan, R., T.P. Sabin, R. Vellore, M. Mujumdar, J. Sanjay, B.N. Goswami, and P. Terray. 2016. Deciphering the desiccation trend of the South Asian monsoon hydroclimate in a warming world. Climate Dynamics 47(3–4): 1007–1027. https://doi.org/10.1007/s00382-015-2886-5.

    Article  Google Scholar 

  • Large, W.G., J.C. McWilliams, and S.C. Doney. 1994. Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Reviews of Geophysics. https://doi.org/10.1029/94RG01872.

    Article  Google Scholar 

  • Liu, F., J. Chai, B. Wang, J. Liu, X. Zhang, and Z. Wang. 2016. Global monsoon precipitation responses to large volcanic eruptions. Scientific Reports 6 (April): 1–11. https://doi.org/10.1038/srep24331.

    Article  Google Scholar 

  • Meehl, G.A., T.F. Stocker, W.D. Collins, P. Friedlingstein, A.T. Gaye, J.M. Gregory, and I.G. Watterson. 2007. Global climate projections. Climate change 2007: The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change.

    Google Scholar 

  • Moorthi, S., H.L. Pan, and P. Caplan. 2001. Changes to the 2001 NCEP operational MRF/AVN global analysis/forecast system, NWS Tech. Procedures Bulletin 484: 14. NCEP, Silver Spring, Md.

    Google Scholar 

  • Ning, L., J. Liu, and W. Sun. 2017. Influences of volcano eruptions on Asian Summer Monsoon over the last 110 years. Scientific Reports 7: 3–8. https://doi.org/10.1038/srep42626.

    Article  Google Scholar 

  • Parthasarathy, B., A.A. Munot and D.R. Kothawale. 1994. All-India monthly and seasonal rainfall series: 1871–1993. Theoretical Applied Climatology 49:217–224.

    Article  Google Scholar 

  • Rajendran, K., and A. Kitoh. 2008. Indian summer monsoon in future climate projection by a super high-resolution global model.

    Google Scholar 

  • Ramanathan, V., C. Chung, D. Kim, T. Bettge, L. Buja, J.T. Kiehl, and M. Wild. 2005. Atmospheric brown clouds: Impacts on South Asian climate and hydrological cycle. Proceedings of the National Academy of Sciences 102(15): 5326–5333. https://doi.org/10.1073/pnas.0500656102.

    Article  Google Scholar 

  • Saha, S., S. Moorthi, H.L. Pan, X. Wu, J. Wang, S. Nadiga, M. Goldberg. 2010. The NCEP climate forecast system reanalysis. Bulletin of the American Meteorological Society 91(8): 1015–1057. https://doi.org/10.1175/2010BAMS3001.1.

    Article  Google Scholar 

  • Sharmila, S., S. Joseph, A.K. Sahai, S. Abhilash, and R. Chattopadhyay. 2015. Future projection of Indian summer monsoon variability under climate change scenario: An assessment from CMIP5 climate models. Global and Planetary Change 124: 62–78. https://doi.org/10.1016/j.gloplacha.2014.11.004.

    Article  Google Scholar 

  • Sperber, K.R., H. Annamalai, I.S. Kang, A. Kitoh, A. Moise, A. Turner, and T. Zhou. 2013. The Asian summer monsoon: An intercomparison of CMIP5 vs. CMIP3 simulations of the late 20th century. Climate Dynamics 41. https://doi.org/10.1007/s00382-012-1607-6.

    Article  Google Scholar 

  • Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, and P.M. Midgley. 2013. Summary for policymakers. In Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 33. https://doi.org/10.1017/CBO9781107415324.

    Google Scholar 

  • Swapna, P., M.K. Roxy, K. Aparna, K. Kulkarni, A.G. Prajeesh, K. Ashok, and B.N. Goswami. 2015. The IITM earth system model: Transformation of a seasonal prediction model to a long-term climate model. Bulletin of the American Meteorological Society 96 (8): 1351–1368. https://doi.org/10.1175/BAMS-D-13-00276.1.

    Article  Google Scholar 

  • Swapna, P., R. Krishnan, N. Sandeep, Prajeesh, Ayantika, Manmeet, and V. Ramesh. 2018. Long-term climate simulations using the IITM-ESMv2 with focus on the South Asian monsoon. Journal of Advances in Modeling Earth Systems. https://doi.org/10.1029/2017ms001262.

    Article  Google Scholar 

  • Taylor, K.E., R.J. Stouffer, and G.A. Meehl. 2012. An overview of CMIP5 and the experiment design. Bulletin of the American Meteorological Society 93 (4): 485–498. https://doi.org/10.1175/BAMS-D-11-00094.1.

    Article  Google Scholar 

  • Turner, A.G., and H. Annamalai. 2012. Climate change and the South Asian summer monsoon. Nature Climate Change 2 (8): 587–595. https://doi.org/10.1038/nclimate1495.

    Article  Google Scholar 

  • Wang, C., L. Zhang, S.K. Lee, L. Wu, and C.R. Mechoso. 2014. A global perspective on CMIP5 climate model biases. Nature Climate Change 4 (3): 201–205. https://doi.org/10.1038/nclimate2118.

    Article  Google Scholar 

  • Winton, M. 2000. A reformulated three-layer sea ice model. Journal of Atmospheric and Oceanic Technology 17 (4): 525–531. https://doi.org/10.1175/1520-0426(2000)017%3c0525:ARTLSI%3e2.0.CO;2.

    Article  Google Scholar 

  • Zhang, L., and C. Zhao. 2015. Processes and mechanisms for the model SST biases in the North Atlantic and North Pacific: A link with the Atlantic meridional overturning circulation. Journal of Advances in Modeling Earth Systems 7 (2): 739–758. https://doi.org/10.1002/2014MS000415.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Krishnan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Krishnan, R. et al. (2019). The IITM Earth System Model (ESM): Development and Future Roadmap. In: Randall, D., Srinivasan, J., Nanjundiah, R., Mukhopadhyay, . (eds) Current Trends in the Representation of Physical Processes in Weather and Climate Models. Springer Atmospheric Sciences. Springer, Singapore. https://doi.org/10.1007/978-981-13-3396-5_9

Download citation

Publish with us

Policies and ethics