Skip to main content

Convective Available Potential Energy and Precipitation in a Cloud-Resolving Model Simulation of Indian Summer Monsoon

  • Chapter
  • First Online:
  • 924 Accesses

Part of the book series: Springer Atmospheric Sciences ((SPRINGERATMO))

Abstract

Relationship between convective available potential energy (CAPE) and precipitation is explored in a season-long cloud-resolving model (CRM) simulation of Indian summer monsoon. The location of maximum precipitation and CAPE does not always coincide in a CRM simulation. The diurnal land surface heating is shown to have an effect on CAPE and precipitation over ocean. Convective inhibition energy is shown to have a significant effect on the location of precipitation. It is shown that mass flux parameterizations which depend on CAPE consumption do not get the location or magnitude of precipitation right at CRM resolution. It is emphasized that once the model resolution starts approaching cloud scale, the basic assumption of convective quasi-equilibrium is not sufficient and representation of organized mesoscale convective systems becomes imperative. Present-day cumulus parameterizations do not include any representation of organized mesoscale convective systems. We show that CAPE consumed by these systems not only triggers vertical motion but also contributes to horizontal motion of the system.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Arakawa, A. 2004. The cumulus parameterization problem: Past, present, and future. Journal of Climate 17 (13): 2493–2525.

    Article  Google Scholar 

  • Arakawa, A., and W.H. Schubert. 1974. Interaction of a cumulus cloud ensemble with the large-scale environment, part I. Journal of the Atmospheric Sciences 31 (3): 674–701.

    Article  Google Scholar 

  • Arakawa, A., and C.M. Wu. 2013. A unified representation of deep moist convection in numerical modeling of the atmosphere, part I. Journal of the Atmospheric Sciences 70 (7): 1977–1992.

    Article  Google Scholar 

  • Ashok, K., Z. Guan, and T. Yamagata. 2001. Impact of the Indian ocean dipole on the relationship between the Indian monsoon rainfall and enso. Geophysical Research Letters 28 (23): 4499–4502.

    Article  Google Scholar 

  • Donner, L.J., and V.T. Phillips. 2003. Boundary layer control on convective available potential energy: Implications for cumulus parameterization. Journal of Geophysical Research: Atmospheres 108 (D22).

    Google Scholar 

  • Gadgil, S. 2003. The Indian monsoon and its variability. Annual Review of Earth and Planetary Sciences 31 (1): 429–467.

    Article  Google Scholar 

  • Goswami, B.N., and R. Ajaya Mohan. 2001. Intraseasonal oscillations and interannual variability of the Indian summer monsoon. Journal of Climate 14 (6): 1180–1198.

    Article  Google Scholar 

  • Goswami, B.B., P. Mukhopadhyay, M. Khairoutdinov, and B. Goswami. 2013. Simulation of indian summer monsoon intraseasonal oscillations in a superparameterized coupled climate model: Need to improve the embedded cloud resolving model. Climate Dynamics 41 (5–6): 1497–1507.

    Article  Google Scholar 

  • Hong, S.Y., J. Dudhia, and S.H. Chen. 2004. A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Monthly Weather Review 132 (1): 103–120.

    Article  Google Scholar 

  • Hong, S.Y., Y. Noh, and J. Dudhia. 2006. A new vertical diffusion package with an explicit treatment of entrainment processes. Monthly Weather Review 134 (9): 2318–2341.

    Article  Google Scholar 

  • Houze Jr. R.A. 2014. Cloud dynamics, vol. 104. New York: Academic Press.

    Google Scholar 

  • Huffman, G.J., D.T. Bolvin, E.J. Nelkin, D.B. Wolff, R.F. Adler, G. Gu, Y. Hong, K.P. Bowman, and E.F. Stocker. 2007. The trmm multisatellite precipitation analysis (tmpa): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. Journal of Hydrometeorology 8 (1): 38–55.

    Article  Google Scholar 

  • Jain, D.K., A. Chakraborty, and R.S. Nanjundiah. 2012. On the role of cloud adjustment time scale in simulating precipitation with relaxed arakawa-schubert convection scheme. Meteorology and Atmospheric Physics 115 (1–2): 1–13.

    Article  Google Scholar 

  • Jain, D.K., A. Chakraborty, and R.S. Nanjundiah. 2013. Role of the cloud adjustment time scale in simulation of the interannual variability of indian summer monsoon. Meteorology and Atmospheric Physics 122 (3–4): 159–173.

    Article  Google Scholar 

  • Kain, J.S., and J.M. Fritsch. 1993. Convective parameterization for mesoscale models: The kain-fritsch scheme, pp. 165–170.

    Chapter  Google Scholar 

  • Kain, J.S. 2004. The kain-fritsch convective parameterization: An update. Journal of Applied Meteorology 43 (1): 170–181.

    Article  Google Scholar 

  • Lau, K., G. Yang, and S. Shen. 1988. Seasonal and intraseasonal climatology of summer monsoon rainfall over East Asia. Monthly Weather Review 116 (1): 18–37.

    Article  Google Scholar 

  • Moorthi, S., and M.J. Suarez. 1992. Relaxed Arakawa-Schubert. A parameterization of moist convection for general circulation models. Monthly Weather Review 120 (6): 978–1002.

    Article  Google Scholar 

  • National Centers for Environmental Prediction NUDoC National Weather Service. 2000. NCEP FNL operational model global tropospheric analyses, continuing from July 1999. https://doi.org/10.5065/D6M043C6.

  • Rajendran, K., R.S. Nanjundiah, S. Gadgil, and J. Srinivasan. 2012. How good are the simulations of tropical SST–rainfall relationship by IPCC AR4 atmospheric and coupled models? Journal of Earth System Science, pp. 1–16.

    Google Scholar 

  • Randall, D., M. Khairoutdinov, A. Arakawa, and W. Grabowski. 2003. Breaking the cloud parameterization deadlock. Bulletin of the American Meteorological Society 84 (11): 1547–1564.

    Article  Google Scholar 

  • Saji, N., B. Goswami, P. Vinayachandran, and T. Yamagata. 1999. A dipole mode in the tropical Indian ocean. Nature 401 (6751): 360–363.

    Google Scholar 

  • Skamarock, W.C., and J.B. Klemp. 2008. A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. Journal of Computational Physics 227 (7): 3465–3485.

    Article  Google Scholar 

  • Sperber, K.R., H. Annamalai, I.S. Kang, A. Kitoh, A. Moise, A. Turner, B. Wang, and T. Zhou. 2013. The Asian summer monsoon: An intercomparison of CMIP5 vs. CMIP3 simulations of the late 20th century. Climate Dynamics 41 (9–10): 2711–2744.

    Article  Google Scholar 

  • Subrahmanyam, K.V., K.K. Kumar, and A. Narendra Babu. 2015. Phase relation between cape and precipitation at diurnal scales over the Indian summer monsoon region. Atmospheric Science Letters 16 (3): 346–354.

    Article  Google Scholar 

  • Tiedtke, M. 1989. A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Monthly Weather Review 117 (8): 1779–1800.

    Article  Google Scholar 

  • Webster, P.J., and S. Yang. 1992. Monsoon and enso: Selectively interactive systems. Quarterly Journal of the Royal Meteorological Society 118 (507): 877–926.

    Article  Google Scholar 

  • Wu, C.M., and A. Arakawa. 2014. A unified representation of deep moist convection in numerical modeling of the atmosphere, part II. Journal of the Atmospheric Sciences 71 (6): 2089–2103.

    Article  Google Scholar 

  • Yano, J.I., and R. Plant. 2012. Convective quasi-equilibrium. Reviews of Geophysics 50 (4).

    Google Scholar 

  • Yano, J.I., and M.W. Moncrieff. 2016. Numerical archetypal parameterization for mesoscale convective systems. Journal of the Atmospheric Sciences 73 (7): 2585–2602.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepeshkumar Jain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jain, D., Chakraborty, A., Nanjundiah, R.S. (2019). Convective Available Potential Energy and Precipitation in a Cloud-Resolving Model Simulation of Indian Summer Monsoon. In: Randall, D., Srinivasan, J., Nanjundiah, R., Mukhopadhyay, . (eds) Current Trends in the Representation of Physical Processes in Weather and Climate Models. Springer Atmospheric Sciences. Springer, Singapore. https://doi.org/10.1007/978-981-13-3396-5_6

Download citation

Publish with us

Policies and ethics