Skip to main content

Part of the book series: Springer Atmospheric Sciences ((SPRINGERATMO))

Abstract

The role of land surface processes on monsoonal mesoscale convection and rainfall is discussed. The chapter initially provides a foundational framework for the land surface and land–atmosphere coupling processes. This is followed by a discussion regarding the role and the need for improving land feedbacks within multiscale models and processes. In particular, the role of land surface models in providing surface boundary conditions within numerical weather prediction models is highlighted. Building on the observational understanding related to the role of land surface processes and changes on the regional weather and climate, the land surface feedbacks over the monsoon region are summarized. The chapter concludes by highlighting the need for work on three challenges to advance the high-impact monsoon weather prediction. These challenges include (i) more realistic inclusion of land processes and model parameterizations that account for the land–atmosphere feedbacks; (ii) development of datasets including data fusion products that can be used for input conditions including initialization of the land models as well as validation of newer schemes; and (iii) more coordinated model calibration/validation efforts with focus on the monsoon region by community of users (such as Indian land model intercomparison project—using both offline and coupled studies). Studies are especially needed for improving the representation of human-managed landscapes such as urban areas and agricultural croplands in the monsoon region. A more concerted effort linking land model with boundary layer coupling, and convection / microphysical parameterizations is needed as they intimately impact the performance of the coupled numerical weather prediction system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barlage, M., M. Tewari, F. Chen, G. Miguez-Macho, Z.L. Yang, and G.Y. Niu. 2015. The effect of groundwater interaction in North American regional climate simulations with WRF/Noah-MP. Climatic Change 129 (3–4): 485–498.

    Article  Google Scholar 

  • Bozeman, Monica Laureano, Dev Niyogi, S. Gopalakrishnan, Frank D. Marks, Xuejin Zhang, and Vijay Tallapragada. 2012. An HWRF-based ensemble assessment of the land surface feedback on the post-landfall intensification of Tropical Storm Fay (2008). Natural Hazards 63 (3): 1543–1571.

    Google Scholar 

  • Chang, Hsin‐I., Dev Niyogi, Anil Kumar, C.M. Kishtawal, Jimy Dudhia, Fei Chen, U.C. Mohanty, and Marshall Shepherd. 2009. Possible relation between land surface feedback and the post‐landfall structure of monsoon depressions. Geophysical Research Letters 36 (15).

    Google Scholar 

  • Changnon Jr., Stanley A. 1980. More on the La Porte anomaly: A review. Bulletin of the American Meteorological Society 61 (7): 702–711.

    Article  Google Scholar 

  • Changnon Jr., Stanley A., Floyd A. Huff, and Richard G. Semonin. 1971. METROMEX: An investigation of inadvertent weather modification. Bulletin of the American Meteorological Society 52 (10): 958–968.

    Article  Google Scholar 

  • Ching, Jason, G. Mills, B. Bechtel, L. See, J. Feddema, X. Wang, C. Ren, et al. 2018. World urban database and access portal tools (WUDAPT), an urban weather, climate and environmental modeling infrastructure for the anthropocene. Bulletin of the American Meteorological Society 2018.

    Google Scholar 

  • Collatz, G. James, J. Timothy Ball, Cyril Grivet, and Joseph A. Berry. 1991. Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: A model that includes a laminar boundary layer. Agricultural and Forest Meteorology 54 (2–4): 107–136.

    Article  Google Scholar 

  • Fall, Souleymane, Dev Niyogi, Alexander Gluhovsky, Roger A. Pielke, Eugenia Kalnay, and Gilbert Rochon. 2010. Impacts of land use land cover on temperature trends over the continental United States: assessment using the North American Regional Reanalysis. International Journal of Climatology 30 (13): 1980–1993.

    Article  Google Scholar 

  • Gadgil, Sulochana. 2003. The Indian monsoon and its variability. Annual Review of Earth and Planetary Sciences 31 (1): 429–467.

    Article  Google Scholar 

  • Goswami, Bhupendra Nath, V. Venugopal, D. Sengupta, M.S. Madhusoodanan, and Prince K. Xavier. 2006. Increasing trend of extreme rain events over India in a warming environment. Science 314 (5804): 1442–1445.

    Article  Google Scholar 

  • Guo, Zhichang, Paul A. Dirmeyer, Randal D. Koster, Y.C. Sud, Gordon Bonan, Keith W. Oleson, Edmond Chan, et al. 2006. GLACE: The global land–atmosphere coupling experiment. Part II: Analysis. Journal of Hydrometeorology 7 (4): 611–625.

    Article  Google Scholar 

  • Halder, Subhadeep, Subodh K. Saha, Paul A. Dirmeyer, Thomas N. Chase, and Bhupendra Nath Goswami. 2016. Investigating the impact of land-use land-cover change on Indian summer monsoon daily rainfall and temperature during 1951–2005 using a regional climate model. Hydrology and Earth System Sciences 20: 1765–1784.

    Article  Google Scholar 

  • Holt, Teddy R., Dev Niyogi, Fei Chen, Kevin Manning, Margaret A. LeMone, and Aneela Qureshi. 2006. Effect of land–atmosphere interactions on the IHOP 24–25 May 2002 convection case. Monthly Weather Review 134 (1): 113–133.

    Article  Google Scholar 

  • Kellner, Olivia, Dev Niyogi, Ming Lei, and Anil Kumar. 2012. The role of anomalous soil moisture on the inland reintensification of Tropical Storm Erin (2007). Natural Hazards 63 (3): 1573–1600.

    Article  Google Scholar 

  • Kishtawal, Chandra M., Dev Niyogi, Mukul Tewari, Roger A. Pielke, and J. Marshall Shepherd. 2010. Urbanization signature in the observed heavy rainfall climatology over India. International Journal of Climatology 30 (13): 1908–1916.

    Article  Google Scholar 

  • Kishtawal, Chandra M., Dev Niyogi, Anil Kumar, Monica Laureano Bozeman, and Olivia Kellner. 2012. Sensitivity of inland decay of North Atlantic tropical cyclones to soil parameters. Natural Hazards 63 (3): 1527–1542.

    Article  Google Scholar 

  • Koster, Randal D., Paul A. Dirmeyer, Zhichang Guo, Gordon Bonan, Edmond Chan, Peter Cox, C.T. Gordon, et al. 2004. Regions of strong coupling between soil moisture and precipitation. Science 305 (5687): 1138–1140.

    Article  Google Scholar 

  • Krishnamurti, T.N., Anu Simon, Aype Thomas, Akhilesh Mishra, Dev Sikka, Dev Niyogi, Arindam Chakraborty, and Li Li. 2012. Modeling of forecast sensitivity on the march of monsoon isochrones from Kerala to New Delhi: the first 25 days. Journal of the Atmospheric Sciences 69 (8): 2465–2487.

    Article  Google Scholar 

  • Kumar, Anil, Fei Chen, Michael Barlage, Michael B. Ek, and Dev Niyogi. 2014. Assessing impacts of integrating MODIS vegetation data in the weather research and forecasting (WRF) model coupled to two different canopy-resistance approaches. Journal of Applied Meteorology and Climatology 53 (6): 1362–1380.

    Article  Google Scholar 

  • Lawrence, David M., Peter E. Thornton, Keith W. Oleson, and Gordon B. Bonan. 2007. The partitioning of evapotranspiration into transpiration, soil evaporation, and canopy evaporation in a GCM: Impacts on land–atmosphere interaction. Journal of Hydrometeorology 8 (4): 862–880.

    Article  Google Scholar 

  • Lee, Eungul, Thomas N. Chase, Balaji Rajagopalan, Roger G. Barry, Trent W. Biggs, and Peter J. Lawrence. 2009. Effects of irrigation and vegetation activity on early Indian summer monsoon variability. International Journal of Climatology 29 (4): 573–581.

    Article  Google Scholar 

  • Liu, Yaling, Zhihua Pan, Qianlai Zhuang, Diego G. Miralles, Adriaan J. Teuling, Tonglin Zhang, Pingli An, et al. 2015. Agriculture intensifies soil moisture decline in Northern China. Scientific Reports 5: 11261.

    Google Scholar 

  • Liu, Xing, Fei Chen, Michael Barlage, Guangsheng Zhou, and Dev Niyogi. 2016. Noah‐MP‐Crop: Introducing dynamic crop growth in the Noah‐MP land surface model. Journal of Geophysical Research: Atmospheres 121 (23).

    Google Scholar 

  • Nayak, H.P., K.K. Osuri, P. Sinha, R. Nadimpalli, U.C. Mohanty, F. Chen, M. Rajeevan, and D. Niyogi. 2018. High-resolution gridded soil moisture and soil temperature datasets for the Indian monsoon region. Scientific Data 5: 180264.

    Article  Google Scholar 

  • Niu, Guo‐Yue, Zong‐Liang Yang, Kenneth E. Mitchell, Fei Chen, Michael B. Ek, Michael Barlage, Anil Kumar, et al. 2011. The community Noah land surface model with multiparameterization options (Noah‐MP): 1. Model description and evaluation with local‐scale measurements. Journal of Geophysical Research: Atmospheres 116 (D12).

    Google Scholar 

  • Niyogi, Dev, Kiran Alapaty, Sethu Raman, and Fei Chen. 2009. Development and evaluation of a coupled photosynthesis-based gas exchange evapotranspiration model (GEM) for mesoscale weather forecasting applications. Journal of Applied Meteorology and Climatology 48 (2): 349–368.

    Article  Google Scholar 

  • Niyogi, Dev, Chandra Kishtawal, Shivam Tripathi, and Rao S. Govindaraju. 2010. Observational evidence that agricultural intensification and land use change may be reducing the Indian summer monsoon rainfall. Water Resources Research 46 (3).

    Google Scholar 

  • Niyogi, Dev, Patrick Pyle, Ming Lei, S. Pal Arya, Chandra M. Kishtawal, Marshall Shepherd, Fei Chen, and Brian Wolfe. 2011. Urban modification of thunderstorms: An observational storm climatology and model case study for the Indianapolis urban region. Journal of Applied Meteorology and Climatology 50 (5): 1129–1144.

    Article  Google Scholar 

  • Niyogi, Dev, Subashini Subramanian, U.C. Mohanty, C.M. Kishtawal, Subimal Ghosh, U.S. Nair, M. Ek, and M. Rajeevan. 2018. The impact of land cover and land use change on the Indian monsoon region hydroclimate. In Land-atmospheric research applications in South and Southeast Asia, 553–575. Cham: Springer.

    Google Scholar 

  • Noilhan, J., and S. Planton. 1989. A simple parameterization of land surface processes for meteorological models. Monthly Weather Review 117 (3): 536–549.

    Article  Google Scholar 

  • Oke, T.R. 1973. City size and the urban heat island. Atmospheric Environment 7 (8): 769–779 (1967).

    Article  Google Scholar 

  • Osuri, Krishna K., U.C. Mohanty, A. Routray, and M. Mohapatra. 2012. The impact of satellite-derived wind data assimilation on track, intensity and structure of tropical cyclones over the North Indian Ocean. International Journal of Remote Sensing 33 (5): 1627–1652.

    Article  Google Scholar 

  • Osuri, K.K., R. Nadimpalli, U.C. Mohanty, F. Chen, M. Rajeevan, and Dev Niyogi. 2017. Improved prediction of severe thunderstorms over the Indian Monsoon region using high-resolution soil moisture and temperature initialization. Scientific Reports 7: 41377.

    Google Scholar 

  • Pielke, Roger A., et al. 2002. The influence of land-use change and landscape dynamics on the climate system: Relevance to climate-change policy beyond the radiative effect of greenhouse gases. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 360 (1797): 1705–1719.

    Article  Google Scholar 

  • Pielke, Roger A., Andy Pitman, Dev Niyogi, Rezaul Mahmood, Clive McAlpine, Faisal Hossain, Kees Klein Goldewijk, et al. 2011. Land use/land cover changes and climate: Modeling analysis and observational evidence. Wiley Interdisciplinary Reviews: Climate Change 2 (6): 828–850.

    Google Scholar 

  • Pitman, A.J. 2003. The evolution of, and revolution in, land surface schemes designed for climate models. International Journal of Climatology 23 (5): 479–510.

    Article  Google Scholar 

  • Rodell, Matthew, Isabella Velicogna, and James S. Famiglietti. 2009. Satellite-based estimates of groundwater depletion in India. Nature 460 (7258): 999.

    Article  Google Scholar 

  • Rodell, M., J.S. Famiglietti, D.N. Wiese, J.T. Reager, H.K. Beaudoing, F.W. Landerer, and M.-H. Lo. 2018. Emerging trends in global freshwater availability. Nature 1.

    Google Scholar 

  • Roxy, Mathew Koll, Kapoor Ritika, Pascal Terray, Raghu Murtugudde, Karumuri Ashok, and B.N. Goswami. 2015. Drying of Indian subcontinent by rapid Indian Ocean warming and a weakening land-sea thermal gradient. Nature Communications 6: 7423.

    Google Scholar 

  • Roy, Shouraseni Sen, Rezaul Mahmood, Dev Niyogi, Ming Lei, Stuart A. Foster, Kenneth G. Hubbard, Ellen Douglas, and Roger Pielke. 2007. Impacts of the agricultural Green Revolution-induced land use changes on air temperatures in India. Journal of Geophysical Research: Atmospheres 112 (D21).

    Google Scholar 

  • Saha, Subodh K., Subhadeep Halder, K. Krishna Kumar, and B.N. Goswami. 2011. Pre-onset land surface processes and ‘internal’ interannual variabilities of the Indian summer monsoon. Climate Dynamics 36 (11–12): 2077–2089.

    Article  Google Scholar 

  • Santamouris, M. 2015. Analyzing the heat island magnitude and characteristics in one hundred Asian and Australian cities and regions. Science of the Total Environment 512: 582–598.

    Article  Google Scholar 

  • Schmid, Paul E., and Dev Niyogi. 2013. Impact of city size on precipitation-modifying potential. Geophysical Research Letters 40 (19): 5263–5267.

    Article  Google Scholar 

  • Schmid, Paul E., and Dev Niyogi. 2017. Modeling urban precipitation modification by spatially heterogeneous aerosols. Journal of Applied Meteorology and Climatology 56 (8): 2141–2153.

    Article  Google Scholar 

  • Sellers, Piers J., Compton J. Tucker, G. James Collatz, Sietse O. Los, Christopher O. Justice, Donald A. Dazlich, and David A. Randall. 1996. A revised land surface parameterization (SiB2) for atmospheric GCMs. Part II: The generation of global fields of terrestrial biophysical parameters from satellite data. Journal of Climate 9 (4): 706–737.

    Article  Google Scholar 

  • Shastri, Hiteshri, Supantha Paul, Subimal Ghosh, and Subhankar Karmakar. 2015. Impacts of urbanization on Indian summer monsoon rainfall extremes. Journal of Geophysical Research: Atmospheres 120 (2): 496–516.

    Google Scholar 

  • Unnikrishnan, C.K., M. Rajeevan, S. Vijaya Bhaskara Rao, and Manoj Kumar. 2013. Development of a high resolution land surface dataset for the South Asian monsoon region. Current Science 105 (9): 1235–1246.

    Google Scholar 

  • Webster, Peter J., Vo Oo Magana, T.N. Palmer, J. Shukla, R.A. Tomas, M.U. Yanai, and T. Yasunari. 1998. Monsoons: Processes, predictability, and the prospects for prediction. Journal of Geophysical Research: Oceans 103 (C7): 14451–14510.

    Article  Google Scholar 

  • Yang, Long, Fuqiang Tian, James A. Smith, and Hu Heping. 2014. Urban signatures in the spatial clustering of summer heavy rainfall events over the Beijing metropolitan region. Journal of Geophysical Research: Atmospheres 119 (3): 1203–1217.

    Google Scholar 

  • Zhou, Liming, Robert E. Dickinson, Yuhong Tian, Jingyun Fang, Qingxiang Li, Robert K. Kaufmann, Compton J. Tucker, and Ranga B. Myneni. 2004. Evidence for a significant urbanization effect on climate in China. Proceedings of the National Academy of Sciences of the United States of America 101 (26): 9540–9544.

    Article  Google Scholar 

Download references

Acknowledgements

The work in this chapter benefitted from a National Monsoon Mission project Earth System Science Organization, Ministry of Earth Sciences, Government of India (Grant no./Project no MM/SERP/CNRS/2013/INT-10/002), the U.S. National Science Foundation (NSF CAREER grant AGS-0847472 (Ming Cai), NSF CDSE-01250232, NSF AGS-1522492 (Chungu Lu), and USDA Hatch grant 1007699.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dev Niyogi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Niyogi, D. (2019). Land Surface Processes. In: Randall, D., Srinivasan, J., Nanjundiah, R., Mukhopadhyay, . (eds) Current Trends in the Representation of Physical Processes in Weather and Climate Models. Springer Atmospheric Sciences. Springer, Singapore. https://doi.org/10.1007/978-981-13-3396-5_17

Download citation

Publish with us

Policies and ethics