Skip to main content

Enabling Cognitive Predictive Maintenance Using Machine Learning: Approaches and Design Methodologies

  • Conference paper
  • First Online:
Soft Computing and Signal Processing

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 898))

Abstract

Asset reliability and 100% availability of machines are a competitive business advantage in complex industrial environment as they play a vital role in improving productivity. Preventive maintenance models help to identify the performance degradation or failure of machines well ahead to prevent unscheduled breakdown of machines. However, lack of knowledge in identifying the root cause or the lack of knowledge to fix the problem may delay the corrective actions, which in turn impacts the productivity. To overcome this problem, cognitive predictive maintenance model is proposed which helps in classifying and recommending corrective actions along with predicting time to failure of machine. We discussed in detail about building a cognitive system using rule-based bottom-up approaches. We also presented the high-level design of a system to build a software solution using open-source technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akbar, A., Khan, A., Carrez, F., Moessner, K.: Predictive analytics for complex IoT data streams. IEEE Internet Things J. 4, 1571–1582 (2017)

    Article  Google Scholar 

  2. Ayoubi, S., Limam, N., Salahuddin, M.A., Shahriar, N., Boutaba, R., Estrada-Solano, F., Caicedo, O.M.: Machine Learning for Cognitive Network Management. IEEE Commun. Mag. 56(1), 158–165 (2018)

    Article  Google Scholar 

  3. Wang, J., Li, C., Han, S., Sarkar, S., Zhou, X.: Predictive maintenance based on event-log analysis: a case study. IBM J. Res. Dev. 61, 11:121–11:132 (2017)

    Article  Google Scholar 

  4. Goyal, A., Aprilia, E., Janssen, G., Kim, Y., Kumar, T., Mueller, R., Phan, D., Raman, A., Schuddebeurs, J., Xiong, J., Zhang, R.: Asset health management using predictive and prescriptive analytics for the electric power grid. IBM J. Res. Dev. 60, 4.1–4.14 (2016)

    Article  Google Scholar 

  5. Susto, G.A., Schirru, A., Pampuri, S., McLoone, S., Beghi, A.: Machine learning for predictive maintenance, a multiple classifier approach. IEEE Trans. Ind. Inform. 11(3), 812–820 (2015)

    Article  Google Scholar 

  6. Chang, C.-C., Lin Libsvm, C.J.: A library for support vector machines. ACM Trans. Intell. Syst. Technol. 2, 20–29 (2013)

    Google Scholar 

  7. Ren, L., Sun, Y., Wang, H., Zhang, L.: Prediction of bearing remaining useful life with deep convolution neural network. IEEE Access 6, 13041–13049 (2018)

    Article  Google Scholar 

  8. Deutsch, J., He, D.: Using deep learning-based approach to predict remaining useful life of rotating components. IEEE Trans. Syst. Man Cybern. Syst. 48, 11–20 (2017)

    Article  Google Scholar 

  9. Dhoolia, P., Chugh, P., Costa, P., Gantayat, N., Gupta, M., Kambhatla, N., Kumar, R., Mani, S., Mitra, P., Rogerson, C., Saxena, M.: A cognitive system for business and technical support: a case study. IBM J. Res. Dev. 61, 7:74–7:85 (2017)

    Article  Google Scholar 

  10. Damerow, F., Knoblauch, A., Korner, U., Eggert, J.: Towards self-referential autonomous learning of object and situation models. Springer Cognit. Comput. 8, 703–719 (2016)

    Article  Google Scholar 

  11. Taher, A.: Rule mining and prediction using the Flek machine—a new machine learning engine. In: Bagheri, E., Cheung, J. (eds.) Advances in Artificial Intelligence. Canadian AI Lecture Notes in Computer Science, vol. 10832. Springer, Cham (2018)

    Chapter  Google Scholar 

  12. Ahmad, I., Basheri, M., Iqbal, M.J., Rahim, A.: Performance comparison of support vector machine, random forest, and extreme learning machine for intrusion detection. IEEE Access 6, 33789–33795 (2018)

    Article  Google Scholar 

  13. Zhu, J., Song, Y., Jiang, D., Song, H.: A new deep-Q-Learning-based transmission scheduling mechanism for the cognitive internet of things. IEEE Internet Things J. (2017)

    Google Scholar 

  14. Xie, Z., Jin, Y.: An extended reinforcement learning framework to model cognitive development with enactive pattern representation. IEEE Trans. Cogn. Dev. Syst. (2018)

    Google Scholar 

  15. Vernon D., von Hofsten C., Fadiga L: The iCub cognitive architecture, a roadmap for cognitive development in humanoid robots. In: Cognitive Systems Monographs, vol. 11. Springer, Berlin, Heidelberg (2017)

    Google Scholar 

  16. Oltramari, A., Lebiere, C.: Pursuing artificial general intelligence by leveraging the knowledge capabilities of act-r. In: Artificial General Intelligence, vol. 7716, pp. 199–208. Springer (2012)

    Google Scholar 

  17. Ge, Z., Song, Z., Ding, S.X., Huang, B.: Data mining and analytics in the process industry—the role of machine learning. IEEE Access 5, 20590–20616 (2017)

    Article  Google Scholar 

  18. Chen, M., Tian, Y., Fortino, G., Zhang, J., Humar, I.: Cognitive internet of vehicles. Elsevier Comput. Commun. 120, 58–70 (2018)

    Article  Google Scholar 

  19. Poosapati, V., Katneni, V., Manda, V.K.: Super SCADA systems: a prototype for next gen SCADA system. IAETSD J. Adv. Res. Appl. Sci. 3, 107–115 (2018)

    Google Scholar 

  20. Suna, R., Zhangb, X.: Top-down versus bottom-up learning in cognitive skill acquisition. Elsevier Cogn. Syst. Res. 5, 63–89 (2004)

    Article  Google Scholar 

  21. Antonio, L., Lebiere, A., Oltramarid, A.: The knowledge level in cognitive architectures, current limitations and possible developments. Elsevier Cogn. Syst. Res. 48, 39–55 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijayaramaraju Poosapati .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Poosapati, V., Katneni, V., Manda, V.K., Ramesh, T.L.V. (2019). Enabling Cognitive Predictive Maintenance Using Machine Learning: Approaches and Design Methodologies. In: Wang, J., Reddy, G., Prasad, V., Reddy, V. (eds) Soft Computing and Signal Processing . Advances in Intelligent Systems and Computing, vol 898. Springer, Singapore. https://doi.org/10.1007/978-981-13-3393-4_5

Download citation

Publish with us

Policies and ethics