Skip to main content

Music Generation Using Deep Learning

  • Conference paper
  • First Online:

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 898))

Abstract

Deep learning has recently been used for many art-related activities such as automatic generation of music and pictures. This paper deals with music generation by using raw audio files in the frequency domain using Restricted Boltzmann Machine and Long Short- Term Memory architectures. The work does not use any information about musical structure to aid the learning, instead, it learns from a previous permutation of notes and generates an optimal and pleasant permutation. It also serves as a comparative study for music generation using Long Short-Term Memory and Restricted Boltzmann Machine.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Horner, A., Goldberg, D.E.: Genetic algorithms and computer-assisted music composition. Urbana 51(61801), 437–441 (1991)

    Google Scholar 

  2. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In: Advances in Neural Information Processing Systems (2014)

    Google Scholar 

  3. Nayebi, A., Vitelli, M.: Gruv: algorithmic music generation using recurrent neural networks. Course CS224D: Deep Learning for Natural Language Processing (Stanford) (2015)

    Google Scholar 

  4. Van Den Oord, A., Dieleman, S., Zen, H., Simonyan, K., Vinyals. O., Graves, A., Kalchbrenner, N., Senior, A., Kavukcuoglu, K.: Wavenet: A Generative Model for Raw Audio. arXiv preprint (2016)

    Google Scholar 

  5. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  6. Bickerman, G., et al.: Learning to Create Jazz Melodies Using Deep Belief Nets. In: ICCC (2010)

    Google Scholar 

  7. Earley, S., Obama, T., Note Identification Using FFT.: Note Identification Using Fast Fourier Transform

    Google Scholar 

  8. Fliege, N.J.: Multirate Digital Signal Processing, vol. 994. Wiley, New York (1994)

    MATH  Google Scholar 

  9. Yu, G., Mallat, S., Bacry, Emmanuel: Audio denoising by time-frequency block thresholding. IEEE Trans. Signal Process. 56(5), 1830–1839 (2008)

    Article  MathSciNet  Google Scholar 

  10. Katoh, K., et al.: MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucl. Acids Res. 30(14), 3059–3066 (2002)

    Article  Google Scholar 

  11. Hinton, G.E.: A practical guide to training restricted Boltzmann machines. In: Neural Networks: Tricks of the Trade, pp. 599–619. Springer, Berlin, Heidelberg (2012)

    Google Scholar 

  12. Hinton, G.E., Osindero, S., Teh, Yee-Whye: A fast learning algorithm for deep belief nets. Neural Comput. 18(7), 1527–1554 (2006)

    Article  MathSciNet  Google Scholar 

  13. Hinton, G.E.: To recognize shapes, first learn to generate images. Prog. Brain Res. 165, 535-547 (2007)

    Google Scholar 

  14. Salakhutdinov, R., Mnih, A., Hinton, G.: Restricted Boltzmann machines for collaborative filtering. In: Proceedings of the 24th International Conference on Machine Learning. ACM (2007)

    Google Scholar 

  15. Susskind, J.M., et al.: Generating facial expressions with deep belief nets. Affective Computing. InTech (008)

    Google Scholar 

  16. Smolensky, P.: Foundations of harmony theory: cognitive dynamical systems and the subsymbolic theory of information processing. Parallel Distrib. Process. Explor. Microstruct. Cogn. 1, 191–281 (1986)

    Google Scholar 

  17. Chollet, F.: “Keras (2015)” (2017)

    Google Scholar 

  18. Huang, A., Wu, R.: Deep learning for music. arXiv preprint arXiv:1606.04930 (2016)

  19. Eck, D., Schmidhuber, J.: Learning the long-term structure of the blues. In: International Conference on Artificial Neural Networks. Springer, Berlin, Heidelberg (2002)

    Chapter  Google Scholar 

  20. Huang, Y.-S., Chou, S.-Y., Yang, Y.-H.: Generating Music Medleys via Playing Music Puzzle Games

    Google Scholar 

  21. Hinton, Geoffrey E.: Training products of experts by minimizing contrastive divergence. Neural Comput. 14(8), 1771–1800 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aishwarya Bhave .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bhave, A., Sharma, M., Janghel, R.R. (2019). Music Generation Using Deep Learning. In: Wang, J., Reddy, G., Prasad, V., Reddy, V. (eds) Soft Computing and Signal Processing . Advances in Intelligent Systems and Computing, vol 898. Springer, Singapore. https://doi.org/10.1007/978-981-13-3393-4_21

Download citation

Publish with us

Policies and ethics