Skip to main content

Respiratory Care of Neurologic Patient

  • Chapter
  • First Online:
Textbook of Neuroanesthesia and Neurocritical Care

Abstract

Neurologic patients often require prolonged mechanical ventilation due to inability to protect the airway. Ventilatory strategies should aim to preserve oxygenation, to maintain carbon dioxide levels within acceptable ranges, and moreover to reach an adequate blood flow and cerebral perfusion pressure in order to prevent secondary brain damage. However, there is no unanimous agreement on ventilatory strategy in brain-injured patients because brain and lungs have complex interactions and small ventilatory changes may lead to important changes in cerebral physiology. Furthermore, the best ventilatory strategy is not entirely clear and still debated. In addition, neurocritical patients present high incidence of secondary lung injury and that makes the choice of ventilatory setting difficult. When avoidance of intubation is warranted, non-invasive support techniques could be considered. Weaning should be initiated as soon as possible because of the complications associated with prolonged intubation and tracheostomy. Scores and protocols used in general critically ill patients might not be directly applicable to neurocritical patients. Tracheostomy could promote earlier weaning because in neurological patients the predominant cause of respiratory dysfunction is not ventilation itself, but rather the inability to maintain upper airways patency. The better timing to tracheostomy in neurological ICU patient is still unknown, but usually a cutoff of 2 weeks of mechanical ventilation is applicable also in these patients. The aim of this chapter is to provide a comprehensive overview of the pathophysiologic and clinical aspects concerning the respiratory care of the neurologic patient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Seder DB, Bösel J. Airway management and mechanical ventilation in acute brain injury. Handb Clin Neurol. 2017;140:15–32.

    Article  CAS  Google Scholar 

  2. Obrist WD, Langfitt TW, Jaggi JL, Cruz J, Gennarelli TA. Cerebral blood flow and metabolism in comatose patients with acute head injury. Relationship to intracranial hypertension. J Neurosurg. 1984;61(2):241–53.

    Article  CAS  Google Scholar 

  3. Marion DW, Bouma GJ. The use of stable xenon-enhanced computed tomographic studies of cerebral blood flow to define changes in cerebral carbon dioxide vasoresponsivity caused by a severe head injury. Neurosurgery. 1991;29(6):869–73.

    Article  CAS  Google Scholar 

  4. Tayal VS, Riggs RW, Marx JA, Tomaszewski CA, Schneider RE. Rapid-sequence intubation at an emergency medicine residency: success rate and adverse events during a two-year period. Acad Emerg Med Off J Soc Acad Emerg Med. 1999;6(1):31–7.

    Article  CAS  Google Scholar 

  5. Brain Trauma Foundation, American Association of Neurological Surgeons, Congress of Neurological Surgeons, Joint Section on Neurotrauma and Critical Care, AANS/CNS, Bratton SL, Chestnut RM, et al. Guidelines for the management of severe traumatic brain injury. IX. Cerebral perfusion thresholds. J Neurotrauma. 2007;24(Suppl 1):S59–64.

    Google Scholar 

  6. Mascia L, Zavala E, Bosma K, Pasero D, Decaroli D, Andrews P, et al. High tidal volume is associated with the development of acute lung injury after severe brain injury: an international observational study. Crit Care Med. 2007;35(8):1815–20.

    Article  Google Scholar 

  7. Koutsoukou A, Katsiari M, Orfanos SE, Kotanidou A, Daganou M, Kyriakopoulou M, et al. Respiratory mechanics in brain injury: a review. World J Crit Care Med. 2016;5(1):65–73.

    Article  Google Scholar 

  8. Chen H, Xu M, Yang Y-L, Chen K, Xu J-Q, Zhang Y-R, et al. Effects of increased positive end-expiratory pressure on intracranial pressure in acute respiratory distress syndrome: a protocol of a prospective physiological study. BMJ Open. 2016;6(11):e012477.

    Article  Google Scholar 

  9. Ball L, Costantino F, Orefice G, Chandrapatham K, Pelosi P. Intraoperative mechanical ventilation: state of the art. Minerva Anestesiol. 2017;83(10):1075–88.

    PubMed  Google Scholar 

  10. Cruz FF, Ball L, Rocco PRM, Pelosi P. Ventilator-induced lung injury during controlled ventilation in patients with acute respiratory distress syndrome: less is probably better. Expert Rev Respir Med. 2018;12(5):403–14.

    Article  CAS  Google Scholar 

  11. Güldner A, Kiss T, Serpa Neto A, Hemmes SNT, Canet J, Spieth PM, et al. Intraoperative protective mechanical ventilation for prevention of postoperative pulmonary complications: a comprehensive review of the role of tidal volume, positive end-expiratory pressure, and lung recruitment maneuvers. Anesthesiology. 2015;123(3):692–713.

    Article  Google Scholar 

  12. McCredie VA, Alali AS, Scales DC, Adhikari NKJ, Rubenfeld GD, Cuthbertson BH, et al. Effect of early versus late tracheostomy or prolonged intubation in critically ill patients with acute brain injury: a systematic review and meta-analysis. Neurocrit Care. 2017;26(1):14–25.

    Article  Google Scholar 

  13. Mullaguri N, Khan Z, Nattanmai P, Newey CR. Extubating the neurocritical care patient: a spontaneous breathing trial algorithmic approach. Neurocrit Care. 2018;28(1):93–6.

    Article  Google Scholar 

  14. McGuire G, Crossley D, Richards J, Wong D. Effects of varying levels of positive end-expiratory pressure on intracranial pressure and cerebral perfusion pressure. Crit Care Med. 1997;25(6):1059–62.

    Article  CAS  Google Scholar 

  15. Boone MD, Jinadasa SP, Mueller A, Shaefi S, Kasper EM, Hanafy KA, et al. The effect of positive end-expiratory pressure on intracranial pressure and cerebral hemodynamics. Neurocrit Care. 2017;26(2):174–81.

    Article  Google Scholar 

  16. Shapiro HM, Marshall LF. Intracranial pressure responses to PEEP in head-injured patients. J Trauma. 1978;18(4):254–6.

    Article  CAS  Google Scholar 

  17. The ARDS Clinical Trials Network, National Heart, Lung, and Blood Institute, National Institutes of Health. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. The acute respiratory distress syndrome network. N Engl J Med. 2000;342(18):1301–8.

    Article  Google Scholar 

  18. Briel M, Meade M, Mercat A, Brower RG, Talmor D, Walter SD, et al. Higher vs lower positive end-expiratory pressure in patients with acute lung injury and acute respiratory distress syndrome: systematic review and meta-analysis. JAMA. 2010;303(9):865–73.

    Article  CAS  Google Scholar 

  19. Bugedo G, Retamal J, Bruhn A. Does the use of high PEEP levels prevent ventilator-induced lung injury? Rev Bras Ter Intensiva. 2017;29(2):231–7.

    Article  Google Scholar 

  20. Flexman AM, Gooderham PA, Griesdale DE, Argue R, Toyota B. Effects of an alveolar recruitment maneuver on subdural pressure, brain swelling, and mean arterial pressure in patients undergoing supratentorial tumour resection: a randomized crossover study. Can J Anaesth. 2017;64(6):626–33.

    Article  Google Scholar 

  21. Nemer SN, Caldeira JB, Azeredo LM, Garcia JM, Silva RT, Prado D, et al. Alveolar recruitment maneuver in patients with subarachnoid hemorrhage and acute respiratory distress syndrome: a comparison of 2 approaches. J Crit Care. 2011;26(1):22–7.

    Article  Google Scholar 

  22. Theodore J, Robin ED. Pathogenesis of neurogenic pulmonary oedema. Lancet. 1975;2(7938):749–51.

    Article  CAS  Google Scholar 

  23. Ott L, McClain CJ, Gillespie M, Young B. Cytokines and metabolic dysfunction after severe head injury. J Neurotrauma. 1994;11(5):447–72.

    Article  CAS  Google Scholar 

  24. Yildirim E, Kaptanoglu E, Ozisik K, Beskonakli E, Okutan O, Sargon MF, et al. Ultrastructural changes in pneumocyte type II cells following traumatic brain injury in rats. Eur J Cardiothorac Surg. 2004;25(4):523–9.

    Article  Google Scholar 

  25. Weber DJ, Gracon ASA, Ripsch MS, Fisher AJ, Cheon BM, Pandya PH, et al. The HMGB1-RAGE axis mediates traumatic brain injury-induced pulmonary dysfunction in lung transplantation. Sci Transl Med. 2014;6(252):252ra124.

    Article  Google Scholar 

  26. López-Aguilar J, Villagrá A, Bernabé F, Murias G, Piacentini E, Real J, et al. Massive brain injury enhances lung damage in an isolated lung model of ventilator-induced lung injury. Crit Care Med. 2005;33(5):1077–83.

    Article  Google Scholar 

  27. Elmer J, Hou P, Wilcox SR, Chang Y, Schreiber H, Okechukwu I, et al. Acute respiratory distress syndrome after spontaneous intracerebral hemorrhage. Crit Care Med. 2013;41(8):1992–2001.

    Article  Google Scholar 

  28. Solenski NJ, Haley EC, Kassell NF, Kongable G, Germanson T, Truskowski L, et al. Medical complications of aneurysmal subarachnoid hemorrhage: a report of the multicenter, cooperative aneurysm study. Participants of the Multicenter Cooperative Aneurysm Study. Crit Care Med. 1995;23(6):1007–17.

    Article  CAS  Google Scholar 

  29. Friedman JA, Pichelmann MA, Piepgras DG, McIver JI, Toussaint LG, McClelland RL, et al. Pulmonary complications of aneurysmal subarachnoid hemorrhage. Neurosurgery. 2003;52(5):1025–31; discussion 1031–32.

    PubMed  Google Scholar 

  30. Bratton SL, Davis RL. Acute lung injury in isolated traumatic brain injury. Neurosurgery. 1997;40(4):707–12; discussion 712.

    Article  CAS  Google Scholar 

  31. Talman WT, Perrone MH, Reis DJ. Acute hypertension after the local injection of kainic acid into the nucleus tractus solitarii of rats. Circ Res. 1981;48(2):292–8.

    Article  CAS  Google Scholar 

  32. Ross CA, Ruggiero DA, Park DH, Joh TH, Sved AF, Fernandez-Pardal J, et al. Tonic vasomotor control by the rostral ventrolateral medulla: effect of electrical or chemical stimulation of the area containing C1 adrenaline neurons on arterial pressure, heart rate, and plasma catecholamines and vasopressin. J Neurosci. 1984;4(2):474–94.

    Article  CAS  Google Scholar 

  33. Dai S-S, Wang H, Yang N, An J-H, Li W, Ning Y-L, et al. Plasma glutamate-modulated interaction of A2AR and mGluR5 on BMDCs aggravates traumatic brain injury-induced acute lung injury. J Exp Med. 2013;210(4):839–51.

    Article  CAS  Google Scholar 

  34. Winklewski PJ, Radkowski M, Demkow U. Cross-talk between the inflammatory response, sympathetic activation and pulmonary infection in the ischemic stroke. J Neuroinflammation. 2014;11:213.

    Article  Google Scholar 

  35. Bickenbach J, Zoremba N, Fries M, Dembinski R, Doering R, Ogawa E, et al. Low tidal volume ventilation in a porcine model of acute lung injury improves cerebral tissue oxygenation. Anesth Analg. 2009;109(3):847–55.

    Article  Google Scholar 

  36. Oddo M, Citerio G. ARDS in the brain-injured patient: what’s different? Intensive Care Med. 2016;42(5):790–3.

    Article  Google Scholar 

  37. Guérin C, Reignier J, Richard J-C, Beuret P, Gacouin A, Boulain T, et al. Prone positioning in severe acute respiratory distress syndrome. N Engl J Med. 2013;368(23):2159–68.

    Article  Google Scholar 

  38. Mielck F, Quintel M. Extracorporeal membrane oxygenation. Curr Opin Crit Care. 2005;11(1):87–93.

    Article  Google Scholar 

  39. Martindale T, McGlone P, Chambers R, Fennell J. Management of severe traumatic brain injury and acute respiratory distress syndrome using pumped extracorporeal carbon dioxide removal device. J Intensive Care Soc. 2017;18(1):66–70.

    Article  Google Scholar 

  40. Wijdicks EFM. The neurology of acutely failing respiratory mechanics. Ann Neurol. 2017;81(4):485–94.

    Article  Google Scholar 

  41. Hassid VJ, Schinco MA, Tepas JJ, Griffen MM, Murphy TL, Frykberg ER, et al. Definitive establishment of airway control is critical for optimal outcome in lower cervical spinal cord injury. J Trauma. 2008;65(6):1328–32.

    Article  Google Scholar 

  42. Cabrera Serrano M, Rabinstein AA. Causes and outcomes of acute neuromuscular respiratory failure. Arch Neurol. 2010;67(9):1089–94.

    Article  Google Scholar 

  43. Serpa Neto A, Hemmes SNT, Barbas CSV, Beiderlinden M, Fernandez-Bustamante A, Futier E, et al. Incidence of mortality and morbidity related to postoperative lung injury in patients who have undergone abdominal or thoracic surgery: a systematic review and meta-analysis. Lancet Respir Med. 2014;2(12):1007–15.

    Article  Google Scholar 

  44. Neto AS, Simonis FD, Barbas CSV, Biehl M, Determann RM, Elmer J, et al. Lung-protective ventilation with low tidal volumes and the occurrence of pulmonary complications in patients without acute respiratory distress syndrome: a systematic review and individual patient data analysis. Crit Care Med. 2015;43(10):2155–63.

    Article  Google Scholar 

  45. de Jong MAC, Ladha KS, Melo MFV, Staehr-Rye AK, Bittner EA, Kurth T, et al. Differential effects of intraoperative positive end-expiratory pressure (PEEP) on respiratory outcome in major abdominal surgery versus craniotomy. Ann Surg. 2016;264(2):362–9.

    Article  Google Scholar 

  46. Pelosi P, Ball L, de Abreu MG, Rocco PRM. General anesthesia closes the lungs: keep them resting. Turk J Anaesthesiol Reanim. 2016;44(4):163–4.

    Article  Google Scholar 

  47. Pelosi P, Hedenstierna G, Ball L, Edmark L, Bignami E. The real role of the PEEP in operating room: pros & cons. Minerva Anestesiol. 2018;84(2):229–35.

    PubMed  Google Scholar 

  48. Mure M, Domino KB, Lindahl SG, Hlastala MP, Altemeier WA, Glenny RW. Regional ventilation-perfusion distribution is more uniform in the prone position. J Appl Physiol (1985). 2000;88(3):1076–83.

    Article  CAS  Google Scholar 

  49. Pelosi P, Croci M, Calappi E, Cerisara M, Mulazzi D, Vicardi P, et al. The prone positioning during general anesthesia minimally affects respiratory mechanics while improving functional residual capacity and increasing oxygen tension. Anesth Analg. 1995;80(5):955–60.

    CAS  PubMed  Google Scholar 

  50. Jo YY, Kim JY, Kwak YL, Kim YB, Kwak HJ. The effect of pressure-controlled ventilation on pulmonary mechanics in the prone position during posterior lumbar spine surgery: a comparison with volume-controlled ventilation. J Neurosurg Anesthesiol. 2012;24(1):14–8.

    Article  Google Scholar 

  51. Fathi A-R, Eshtehardi P, Meier B. Patent foramen ovale and neurosurgery in sitting position: a systematic review. Br J Anaesth. 2009;102(5):588–96.

    Article  Google Scholar 

  52. Feigl GC, Decker K, Wurms M, Krischek B, Ritz R, Unertl K, et al. Neurosurgical procedures in the semisitting position: evaluation of the risk of paradoxical venous air embolism in patients with a patent foramen ovale. World Neurosurg. 2014;81(1):159–64.

    Article  Google Scholar 

  53. Günther F, Frank P, Nakamura M, Hermann EJ, Palmaers T. Venous air embolism in the sitting position in cranial neurosurgery: incidence and severity according to the used monitoring. Acta Neurochir. 2017;159(2):339–46.

    Article  Google Scholar 

  54. Himes BT, Mallory GW, Abcejo AS, Pasternak J, Atkinson JLD, Meyer FB, et al. Contemporary analysis of the intraoperative and perioperative complications of neurosurgical procedures performed in the sitting position. J Neurosurg. 2017;127(1):182–8.

    Article  Google Scholar 

  55. Sakka SG, Wappler F. Operative Intensivmedizin nach neurochirurgischen Eingriffen. In: Wilhelm W, editor. Praxis der Intensivmedizin [Internet]. Berlin: Springer; 2013. pp. 793–803. http://link.springer.com/10.1007/978-3-642-34433-6_56. Accessed 24 May 2018.

  56. Bösel J. Use and timing of tracheostomy after severe stroke. Stroke. 2017;48(9):2638–43.

    Article  Google Scholar 

  57. Pelosi P, Ball L, Brunetti I, Vargas M, Patroniti N. Tracheostomy in intensive care: patients and families will never walk alone! Anaesth Crit Care Pain Med. 2018;37(3):197–9.

    Article  Google Scholar 

  58. Vargas M, Sutherasan Y, Antonelli M, Brunetti I, Corcione A, Laffey JG, et al. Tracheostomy procedures in the intensive care unit: an international survey. Crit Care. 2015;19:291.

    Article  Google Scholar 

  59. Bösel J, Schiller P, Hook Y, Andes M, Neumann J-O, Poli S, et al. Stroke-related early tracheostomy versus prolonged orotracheal intubation in neurocritical care trial (SETPOINT): a randomized pilot trial. Stroke. 2013;44(1):21–8.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ball, L., Battaglini, D., Pelosi, P. (2019). Respiratory Care of Neurologic Patient. In: Prabhakar, H., Ali, Z. (eds) Textbook of Neuroanesthesia and Neurocritical Care. Springer, Singapore. https://doi.org/10.1007/978-981-13-3390-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-3390-3_14

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-3389-7

  • Online ISBN: 978-981-13-3390-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics