Skip to main content

Teacher Professional Competence: What Can Be Learned About the Knowledge and Practices Needed for Teaching?

  • Chapter
  • First Online:
Examining the Phenomenon of “Teaching Out-of-field”

Abstract

As teacher educators face the challenge of supporting out-of-field teachers, it is essential to maintain a focus on the development of both specialised content knowledge and the essential skills and practices required for competent teaching. It is well established that teachers’ knowledge base plays a critical role in determining what is done in classrooms, and accordingly, how and what students learn. Similarly, research relating to the professional work of teachers emphasise the importance of developing teachers’ core practices. Utilising the example of mathematics and science teacher education, this chapter examines both teacher knowledge and teacher practices, with a focus on key considerations for ‘out-of-field’ teacher education. We discuss the importance of both knowledge and practices being incorporated into professional learning opportunities for teachers entering an out-of-field subject. We suggest that this involves identifying core practices as specific to subject areas, identifying key knowledge as underpinning and connected to these practices, and to provide out-of-field teachers with the appropriate opportunities to acquire such knowledge and practices. Accordingly, key considerations and reference points for researching out-of-field teachers are identified, as well as policy implications for the design and implementation of suitable professional learning opportunities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abell, S. K. (2007). Research on science teacher knowledge. In S. K. Abell & N. G. Lederman (Eds.), Handbook of research on science education (pp. 1105–1149). Mahwah, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Adler, J., & Davis, Z. (2006). Opening another black box: Researching mathematics for teaching in mathematics teacher education. Journal for Research in Mathematics Education, 37(4), 270–296.

    Google Scholar 

  • Arzi, H., & White, R. (2008). Change in teachers’ knowledge of subject matter: A 17-year longitudinal study. Science Education, 92(2), 221–251.

    Article  Google Scholar 

  • Askew, M., Venkat, H., & Mathews, C. (2012). Coherence and consistency in South African primary mathematics lessons. In T.-Y. Tso (Ed.), 36th Conference of the International Group for the Psychology of Mathematics Education: Opportunities to Learn in Mathematics Education (Vol. 2, pp. 27–34). Taipei: National Taiwan Normal University.

    Google Scholar 

  • Association of Mathematics Teacher Educators (AMTE). (2017). Standards for Preparing Teacher of Mathematics. amte.net/standards.

  • Australian Institute for Teaching and School Leadership (AITSL). (2011). National Professional Standards for Teachers. Education Services Australia.

    Google Scholar 

  • Australian Science Teachers Association (ASTA). (2009). National Professional Standards for highly accomplished teachers of science: Final draft. ASTA & Teaching Australia. Retrieved from http://asta.edu.au/resources/professional_standards/asta_teachingaus_ps.

  • Ball, D. L., & Forzani, F. M. (2009). The work of teaching and the challenge for teacher education. Journal of Teacher Education, 60(5), 497–511.

    Article  Google Scholar 

  • Ball, D. L., & Forzani, F. M. (2011). Building a common core for learning to teach: And connecting professional learning to practice. American Educator, 35(2), 17.

    Google Scholar 

  • Ball, D. L., Thames, M. H., & Phelps, G. (2008). Content knowledge for teaching: What makes it special? Journal of Teacher Education, 59(5), 389–407.

    Article  Google Scholar 

  • Banilower, E. R., Trygstad, P. J., & Smith, P. S. (2015). The first five years. In J. Luft & S. Dubois (Eds.), Newly hired teachers of science (pp. 3–29). Rotterdam: Sense Publishers.

    Google Scholar 

  • Baumert, J., Kunter, M., Blum, W., Brunner, M., Voss, T., Jordan, A., et al. (2010). Teachers’ mathematical knowledge, cognitive activation in the classroom, and student progress. American Educational Research Journal, 47(1), 133–180.

    Article  Google Scholar 

  • Blomeke, S., & Delaney, S. (2012). Assessment of teacher knowledge across countries: A review of the state of research. ZDM Mathematics Education, 44(3), 223–247.

    Article  Google Scholar 

  • Borko, H. (2004). Professional development and teacher learning: Mapping the terrain. Educational Researcher, 33(8), 3–15.

    Article  Google Scholar 

  • Burn, K., & Mutton, T. (2015). Review of ‘research-informed clinical practice’ in initial teacher education. Research and Teacher Education: The BERA-RSA Inquiry. Retrieved from http://www.bera.ac.uk/resources/research-and-teacher-education-bera-rsa-inquiry.

  • Campbell, P. F., Nishio, M., Smith, T. M., Clark, L. M., Conant, D. L., Rust, A. H., et al. (2014). The relationship between teachers’ mathematical content and pedagogical knowledge, teachers’ perceptions, and student achievement. Journal for Research in Mathematics Education, 45(4), 419–459.

    Article  Google Scholar 

  • Chapman, O. (2013). Investigating teachers’ knowledge for teaching mathematics. Journal of Mathematics Teacher Education, 16(4), 237–243.

    Article  Google Scholar 

  • Charalambous, C. Y. (2016). Investigating the knowledge needed for teaching mathematics: An exploratory validation study focusing on teaching practices. Journal of Teacher Education, 67(3), 220–237.

    Article  Google Scholar 

  • Childs, A., & McNicholl, J. (2007). Science teachers teaching outside of subject specialism: Challenges, strategies adopted and implications for initial teacher education. Teacher Development, 11(1), 1–20.

    Article  Google Scholar 

  • Clotfelter, C., Ladd, H., & Vigdor, J. (2007). Teacher credentials and student achievement in high school: A cross-subject analysis with student fixed effects. Cambridge, MA: National Bureau of Economic Research.

    Google Scholar 

  • Cochran-Smith, M., & Zeichner, K. (2005). Studying teacher education. Mahwah, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Davis, B., & Renert, M. (2013). Profound understanding of emergent mathematics: Broadening the construct of teachers’ disciplinary knowledge. Educational Studies in Mathematics, 82(2), 245–265.

    Article  Google Scholar 

  • Du Plessis, A. E. (2015). Effective education: Conceptualising the meaning of out-of-field teaching practices for teachers, teacher quality and school leaders. International Journal of Educational Research, 72, 89–102.

    Article  Google Scholar 

  • Du Plessis, A. E., Gillies, R. M., & Carroll, A. (2014). Out-of-field teaching and professional development: A transnational investigation across Australia and South Africa. International Journal of Educational Research, 66, 90–102.

    Article  Google Scholar 

  • Grossman, P. (2010). Learning to practice: The design of clinical experience in teacher preparation. Retrieved from http://www.nea.org/assets/docs/Clinical_Experience_-_Pam_Grossman.pdf.

  • Grossman, P. L., & Schoenfeld, A. H. (2005). Teaching subject matter. In L. Darling-Hammond, J. Bransford, P. LePage, K. Hammerness, & H. Duffy (Eds.), Preparing teachers for a changing world: What teachers should learn and be able to do (pp. 201–231). San Francisco: Jossey-Bass.

    Google Scholar 

  • Harrell, P. E. (2010). Teaching an integrated science curriculum: Linking teacher knowledge and teaching assignments. Issues in Teacher Education, 19(1), 145–165.

    Google Scholar 

  • Hill, H., Rowan, B., & Ball, D. L. (2005). Effects of teachers’ mathematical knowledge for teaching on student achievement. American Educational Research Journal, 42(2), 371–406.

    Article  Google Scholar 

  • Hobbs, L. (2012). Teaching out-of-field: Factors shaping identities of secondary science and mathematics. Teaching Science, 58(1), 21–29.

    Google Scholar 

  • Hobbs, L. (2013). Teaching ‘out-of-field’ as a boundary crossing event: Factors shaping teacher identity. International Journal of Science and Mathematics Education, 11(2), 271–297.

    Article  Google Scholar 

  • Ingvarson, L., Reid, K., Buckley, S., Kleinhenz, E., Masters, G., & Rowley, G. (2014). Best practice teacher education programs and australia’s own programs. Canberra: Department of Education.

    Google Scholar 

  • Janssen, F., Grossman, P., & Westbroek, H. (2015). Facilitating decomposition and recomposition in practice-based teacher education: The power of modularity. Teaching and Teacher Education, 51, 137–146.

    Article  Google Scholar 

  • Kelly, N., Clarà, M., Kehrwald, B., & Danaher, P. A. (2016). Online learning networks for pre-service and early career teachers. UK: Palgrave MacMillan.

    Book  Google Scholar 

  • Kelly, N., Kickbusch, S., Hadley, F., Andrews, R., Wade-Leeuwen, B., & O’Brien, M. (2018). Raising the quality of praxis in online mentoring. In J. Kriewaldt, A. Ambrosetti, D. Rorrison, & R. Capeness (Eds.), Educating future teachers: Innovative perspectives in professional experience (pp. 123–134). Springer: Singapore.

    Chapter  Google Scholar 

  • Kind, V. (2009). Pedagogical content knowledge in science education: Perspectives and potential for progress. Studies in Science Education, 45(2), 169–204.

    Article  Google Scholar 

  • Kind, V. (2014). A degree is not enough: A quantitative study of aspects of pre-service science teachers’ chemistry content knowledge. International Journal of Science Education, 36(8), 1313–1345.

    Article  Google Scholar 

  • Lampert, M. (2010). Learning teaching in, from, and for practice: What do we mean? Journal of Teacher Education, 61(1), 21–34.

    Article  Google Scholar 

  • Lee, E., & Luft, J. (2008). Experienced secondary science teachers’ representation of Pedagogical Content Knowledge. International Journal of Science Education, 30(10), 1343–1363.

    Article  Google Scholar 

  • Lock, R., Salt, D., & Soares, A. (2011). Acquisition of science subject knowledge and pedagogy in initial teacher training: Report to the wellcome trust. Wellcome Trust: University of Birmingham.

    Google Scholar 

  • Loughran, J., Mulhall, P., & Berry, A. (2008). Exploring pedagogical content knowledge in science teacher education. International Journal of Science Education, 30(10), 1301–1320.

    Article  Google Scholar 

  • Luft, J. A., Hill, K. M., Nixon, R. S., Campbell, B. K., & Dubois, S. L. (2015). The knowledge needed to teach science: Approaches, implications and potential research. Paper presented at the Conference of the Association for Science Teacher Educators, Portland, OR.

    Google Scholar 

  • Lyons, T. (2008). More equal than others? Meeting the professional development needs of rural primary and secondary science teachers. Teaching Science, 54(3), 27–31.

    Google Scholar 

  • Maher, D., & Prescott, A. (2017). Professional development for rural and remote teachers using video conferencing. Asia-Pacific Journal of Teacher Education, 45(5), 520–538.

    Article  Google Scholar 

  • Mawn, M. V., & Davis, K. S. (2015). Providing elementary and middle school science teachers with content and pedagogical professional development in an online environment. In M. V. Mawn, & S. K. Davis (Eds.), Exploring the effectiveness of online education in K-12 environments (pp. 228–249). IGI Global.

    Google Scholar 

  • McDonald, M., Kazemi, E., & Kavanagh, S. (2013). Core practices and pedagogies of teacher education: A call for a common language and collective activity. Journal of Teacher Education, 20(10), 1–9.

    Google Scholar 

  • Musset, P. (2010). Initial teacher education and continuing training policies in a comparative perspective: Current practices in OECD countries and a literature review on potential effects. OECD Education Working Papers, No. 48. Paris: OECD Publishing.

    Google Scholar 

  • National Mathematics Advisory Panel. (2008). Foundations for success: The final report of the National Mathematics Advisory Panel. Washington, DC: U.S. Department of Education.

    Google Scholar 

  • National Science Teachers Association. (2012). NSTA standards for science teacher preparation. Retrieved from http://www.nsta.org/preservice/http://www.nsta.org/preservice/docs/KnowledgeBaseSupporting2012Standards.pdf.

  • Ní Ríordáin, M., Paolucci, C., & O’ Dwyer, L. M. (2017). An examination of the professional development needs of out-of-field mathematics teachers. Teaching and Teacher Education, 64, 162–174.

    Article  Google Scholar 

  • Ní Shuilleabháin, A., & Clivaz, S. (2017). Analyzing teacher learning in lesson study: Mathematical knowledge for teaching and levels of teacher activity. Quadrante, XXVI(2), 99–123.

    Google Scholar 

  • Nixon, R. S., & Luft, J. A. (2015). Teaching chemistry with a biology degree: Crosscutting concepts as boundary objects. In J. A. Luft & S. L. Dubois (Eds.), Newly hired teachers of science: A better beginning (pp. 75–85). Rotterdam, The Netherlands: Sense Publishers.

    Google Scholar 

  • Nixon, R. S., Campbell, B. K., & Luft, J. A. (2016). Effects of subject-area degree and classroom experience on new chemistry teachers’ subject matter knowledge. International Journal of Science Education, 38(10), 1636–1654.

    Article  Google Scholar 

  • Nixon, R. S., Hill, K. M., & Luft, J. A. (2017a). Secondary science teachers’ subject matter knowledge development across the first 5 years. Journal of Science Teacher Education, 28(7), 574–589.

    Article  Google Scholar 

  • Nixon, R. S., Luft, J. A., & Ross, R. J. (2017b). Prevalence and predictors of out-of-field teaching in the first five years. Journal of Research in Science Teaching, 54(9), 1197–1218.

    Article  Google Scholar 

  • Organisation for Economic Co-operation and Development. (OECD). (2014). TALIS 2013 results: An international perspective on teaching and learning. Paris: OECD.

    Google Scholar 

  • Pournara, C., Hodgen, J., Adler, J., & Pillay, V. (2015). Can improving teachers’ knowledge of mathematics lead to gains in learners’ attainment in mathematics? South African Journal of Teacher Education, 35(3), Article no: 1083, 10 pages.

    Article  Google Scholar 

  • Putnam, R. T., & Borko, H. (2000). What do new views of knowledge and thinking have to say about research on teacher learning? Educational Researcher, 29(1), 4–15.

    Article  Google Scholar 

  • Rowland, T., & Ruthven, K. (2011). Mathematical knowledge in teaching. Dordrecht: Springer.

    Book  Google Scholar 

  • Sanders, L. R., Borko, H., & Lockard, J. D. (1993). Secondary science teachers’ knowledge base when teaching science courses in and out of their area of certification. Journal of Research in Science Teaching, 30(7), 723–736.

    Article  Google Scholar 

  • Schoenfeld, A. H. (2010). How we think: A theory of goal-oriented decision making and its educational applications. New York: Routledge.

    Book  Google Scholar 

  • Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher, 15(2), 4–14.

    Article  Google Scholar 

  • Shulman, L. S. (1987). Knowledge and teaching: Foundations of the new reform. Harvard Educational Review, 57(1), 1–22.

    Article  Google Scholar 

  • Stigler, J. W., & Hiebert, J. (1999). The teaching gap: Best ideas from the world’s teachers for improving education in the classroom. New York: The Free Press.

    Google Scholar 

  • Sun, D., Wang, Z. H., Xie, W. T., & Boon, C. C. (2014). Status of integrated science instruction in junior secondary schools of China: An exploratory study. International Journal of Science Education, 36(5), 808–838.

    Article  Google Scholar 

  • Swafford, J. O., Jones, G. A., & Thorton, C. A. (1997). Increased knowledge in geometry and instructional practice. Journal for Research in Mathematics Education, 28(4), 476–483.

    Article  Google Scholar 

  • Tatto, M. T., Schwille, J., Senk, S. L., Bankov, K., Rodriguez, M., Reckase, M., et al. (2012). The teacher education study in mathematics (TEDS-M): Policy, practice and readiness to teach primary and secondary mathematics (Findings from the IEA study of the mathematics preparation of future teachers). Amsterdam, the Netherlands: International Association for the evaluation of Educational Achievement.

    Google Scholar 

  • Vale, C. (2010). Supporting “out-of-field” teachers of secondary mathematics. Australian Mathematics Teacher, 66(1), 17–24.

    Google Scholar 

  • van Driel, J. H., Berry, A., & Meirink, J. (2014). Research on science teacher knowledge. In N. G. Lederman & S. K. Abell (Eds.), Handbook of research on science education (Vol. II, pp. 848–870). New York: Routledge.

    Google Scholar 

  • Vangrieken, K., Meredith, C., Packer, T., & Kyndt, E. (2017). Teacher communities as a context for professional development: A systematic review. Teaching and Teacher Education, 61, 47–59.

    Article  Google Scholar 

  • Veal, W. R., & Allan, E. (2014). Understanding the 2012 NSTA science standards for teacher preparation. Journal of Science Teacher Education, 25(5), 567–580.

    Article  Google Scholar 

  • Weinert, F. E. (2001). Concept of competence: A conceptual clarification. In D. S. Rychen & L. H. Saganik (Eds.), Defining and selecting key competencies (pp. 45–65). Seattle: Hogrefe & Huber.

    Google Scholar 

  • Windschitl, M., Thompson, J., Braaten, M., & Stroupe, D. (2012). Proposing a core set of instructional practices and tools for teachers of science. Science Education, 96(5), 878–903.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Máire Ní Ríordáin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ní Ríordáin, M., Paolucci, C., Lyons, T. (2019). Teacher Professional Competence: What Can Be Learned About the Knowledge and Practices Needed for Teaching?. In: Hobbs, L., Törner, G. (eds) Examining the Phenomenon of “Teaching Out-of-field”. Springer, Singapore. https://doi.org/10.1007/978-981-13-3366-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-3366-8_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-3365-1

  • Online ISBN: 978-981-13-3366-8

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics