Skip to main content

Pathways of Light

  • Chapter
  • First Online:
Demystifying the Brain

Abstract

This chapter is about the problem of vision, which has, interestingly, two subproblems. One of these subproblems is an easy one, the other hard. The easy problem of vision concerns itself with what happens to light when it enters the brain through the portals called eyes. What is its path? What are the major stopovers? What exactly happens at each of these stopovers? The problem is not easy because it is known in all its immense detail. In fact, the details of the visual system are not completely unraveled, despite the intense and sometimes disproportionate attention paid to vision by the neuroscience community. It is easy because the problem is mainly one of getting all the relevant details by expending adequate resources, human and otherwise, and a lot of time. It is easy in the sense that there is a method to go about it. The other problem of vision is not so easy because there is no well-defined method that allows you to make predictable progress in that area. The hard problem of vision deals with the more interesting, popular question: how do we see? What are the exact neural events that conspire to enable us to have the moment-to-moment revelation of a moving, multicolored vision of the universe? It is not that neuroscience failed to make any progress in this matter. It is just that this second problem resides on the borders of science and philosophy, leading us on into deeper questions regarding the nature of consciousness and so on. The standard evidence-based methods of science seem to flounder and buckle in tacking the second problem.

Of all the senses, sight must be the most delightful.

—Helen Keller.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ali, M., & Klyne, A. (1985). Vision in vertebrates. New York: Plenum Press.

    Book  Google Scholar 

  • Arditi, A. R., Anderson, P. A., & Movshon, J. A. (1981). Monocular and binocular detection of moving sinusoidal gratings. Vision Research, 21(3), 329–336.

    Article  Google Scholar 

  • Baker, C. L., Hess, R. F., & Zihl, J. (1991). Residual motion perception in a “motion-blind” patient, assessed with limited-lifetime random dot stimuli. Journal of Neuroscience, 11(2), 454–461.

    Article  Google Scholar 

  • Blasdel, G. G. (1992a). Orientation selectivity, preference, and continuity in monkey striate cortex. Journal of Neuroscience, 12(8), 3139–3161.

    Article  Google Scholar 

  • Blasdel, G. G. (1992b). Differential imaging of ocular dominance and orientation selectivity in monkey striate cortex. Journal of Neuroscience, 12(8), 3115–3138.

    Article  Google Scholar 

  • Conover, E. (2016). Human eye spots single photons. Science News. Retrieved 2016-08-02.

    Google Scholar 

  • Darwin, C. (1859). On the origin of species (p. 172) (quote on the evolution of the eye).

    Google Scholar 

  • Dawkins, R. (1986). The blind watchmaker: Why the evidence of evolution reveals a universe without design (p. 93). New York: W.W. Norton and Company.

    Google Scholar 

  • Ellis, H. D., & Florence, M. (1990). Bodamer’s (1947) paper on prosopagnosia. Cognitive Neuropsychology, 7(2), 81–105.

    Article  Google Scholar 

  • Futterman, S. (1975). Metabolism and photochemistry in the retina. In R. A. Moses (Ed.), Adler’s physiology of the eye (6th ed., pp. 406–419). St. Louis: C.V. Mosby Company.

    Google Scholar 

  • Gibson, E. J., & Pick, A. D. (2000). An ecological approach to perceptual learning and development. USA: Oxford University Press.

    Google Scholar 

  • Goodale, M. A., & Milner, A. D. (1992). Separate visual pathways for perception and action. Trends in Neurosciences, 15(1), 20–25.

    Article  Google Scholar 

  • Gross, C. G. (1973). Visual functions of inferotemporal cortex. In Visual centers in the brain (pp. 451–482). Berlin, Heidelberg: Springer.

    Chapter  Google Scholar 

  • Haxby, J. V., Grady, C. L., Horwitz, B., Ungerleider, L. G., Mishkin, M., Carson, R. E., … Rapoport, S. I. (1991). Dissociation of object and spatial visual processing pathways in human extrastriate cortex. Proceedings of the National Academy of Sciences, 88(5), 1621–1625.

    Article  Google Scholar 

  • Hegdé, J., & Van Essen, D. C. (2000). Selectivity for complex shapes in primate visual area V2. Journal of Neuroscience, 20(5), RC61.

    Article  Google Scholar 

  • Ito, M., & Komatsu, H. (2004). Representation of angles embedded within contour stimuli in area V2 of macaque monkeys. Journal of Neuroscience, 24(13), 3313–3324.

    Article  Google Scholar 

  • Kreimer, G. (2009). The green algal eyespot apparatus: A primordial visual system and more?. Current Genetics, 55(1), 19–43. https://doi.org/10.1007/s00294-008-0224-8. PMID 19107486.

    Article  Google Scholar 

  • Kriegeskorte, N., Mur, M., Ruff, D. A., Kiani, R., Bodurka, J., Esteky, H., … Bandettini, P. A. (2008). Matching categorical object representations in inferior temporal cortex of man and monkey. Neuron, 60(6), 1126–1141.

    Article  Google Scholar 

  • Le Vay, S., Wiesel, T. N., & Hubel, D. H. (1980). The development of ocular dominance columns in normal and visually deprived monkeys. Journal of Comparative Neurology, 191(1), 1–51.

    Article  Google Scholar 

  • Lindberg, D. C. (1981). Alhazen and the new intromission theory of vision. Theories of vision (Chapter 4, pp. 58–67). The University of Chicago Press.

    Google Scholar 

  • Marr, D., & Poggio, T. (1976). Cooperative computation of stereo disparity. Science, 194(4262), 283–287.

    Article  Google Scholar 

  • Mishkin, M., Ungerleider, L. G., & Macko, K. A. (1983). Object vision and spatial vision: Two cortical pathways. Trends in Neurosciences, 6, 414–417.

    Article  Google Scholar 

  • Nilsson, D.-E., & Pelger, S. (1994). A pessimistic estimate of the time required for an eye to evolve. Proceedings of the Royal Society of London, Series B: Biological Sciences, 256(1345), 53–58.

    Article  Google Scholar 

  • Pack, C. C., & Born, R. T. (2001). Temporal dynamics of a neural solution to the aperture problem in visual area MT of macaque brain. Nature, 409(6823), 1040.

    Article  Google Scholar 

  • Robertson, L., Treisman, A., Friedman-Hill, S., & Grabowecky, M. (1997). The interaction of spatial and object pathways: Evidence from Balint’s syndrome. Journal of Cognitive Neuroscience, 9(3), 295–317.

    Article  Google Scholar 

  • Sacks, O. (1996). To see or not to see. In An anthropologist on mars (pp. 108–152). New York: Random House.

    Google Scholar 

  • Savino, P. J., & Danesh-Meyer, H. V. (2012). Color atlas and synopsis of clinical ophthalmology—Wills Eye Institute—Neuro-ophthalmology (p. 12). Philadelphia: Lippincott Williams & Wilkins. ISBN 978-1-60913-266-8. Retrieved November 9, 2014.

    Google Scholar 

  • Sim, N., Cheng, M. F., Bessarab, D., Jones, C. M., & Krivitsky, L. A. (2012). Measurement of photon statistics with live photoreceptor cells. Physical Review Letters, 109, 113601.

    Google Scholar 

  • Sperry, R. W. (1950). Neural basis of the spontaneous optokinetic response produced by visual inversion. Journal of comparative and physiological psychology, 43(6), 482.

    Article  Google Scholar 

  • Tanaka, K. (1993). Neuronal mechanisms of object recognition. Science, 262(5134), 685–688.

    Article  Google Scholar 

  • Tessier-Lavigne, M. Visual processing by the retina. In E. R. Kandel, J. H. Schwartz, & T. M. Jessell (Eds.), Principles of neural science (Vol. 4, Chapter 26). New York: McGraw-Hill.

    Google Scholar 

  • Wong, D., & Kwen, B. H. (2005). Shedding light on the nature of science through a historical study of light, redesigning pedagogy: Research, policy, practice.

    Google Scholar 

  • Wurtz, R. H., & Kandel, E. R. Central visual pathways. In E. R. Kandel, J. H. Schwartz, & T. M. Jessell (Eds.), Principles of neural science (Vol. 4, Chapter 27). New York: McGraw-Hill.

    Google Scholar 

  • Young, M. P., & Yamane, S. (1992). Sparse population coding of faces in the inferotemporal cortex. Science, 256(5061), 1327–1331.

    Article  Google Scholar 

  • Zeki, S. (1990). A century of cerebral achromatopsia. Brain, 113(6), 1721–1777.

    Article  Google Scholar 

  • Zeki, S. (1991). Cerebral akinetopsia (visual motion blindness): A review. Brain, 114(2), 811–824.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Srinivasa Chakravarthy .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chakravarthy, V.S. (2019). Pathways of Light. In: Demystifying the Brain. Springer, Singapore. https://doi.org/10.1007/978-981-13-3320-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-3320-0_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-3319-4

  • Online ISBN: 978-981-13-3320-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics