Skip to main content

Micro-electrometer Based on Mode-Localization Effect

  • Chapter
  • First Online:
Micro and Nano Machined Electrometers
  • 529 Accesses

Abstract

Resonant micro-electrometers have been the research interest to many groups around the world. Conventionally, the resonant electrometers rely on a frequency-shift based readout. In this chapter, a new type of resonant micro-electrometer based on mode-localization effect is introduced and discussed. This new electrometer implementation is one subset of a broader family of sensors termed as “mode-localized sensors”. The readout metric of this category of sensors is essentially based on amplitude modulation, which is a key identifier of this approach. In addition to the sensing paradigm shift, the mode-localized sensors have a distinguishable topology to the convention based on a single resonator: that is, typically more than one resonators are intentionally coupled to each other through a coupling element, to allow spatial energy extension. Due the advantages that accompany the unique configurations, such as higher sensitivity and common mode rejection capabilities, the new sensing scheme has quickly attracted researchers’ attention. And naturally it has been adapted for electrometer applications. Currently, the resolution that can be achieved by an electrometer utilizing this approach can be less than 10 e/Hz\(^{1/2}\). Future directions to further enhance the sensor performance are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Here, the subscript \(i=1, 2\) denotes the number of the resonator.

  2. 2.

    Since the amplitude ratio is a dimensionless value, to fairly compare the two scale factors, it is necessary to normalize the scale factor [20].

  3. 3.

    This is generally true for a force input, as the stiffness change induced by the axial stress is generally much larger than that caused by strain variations.

  4. 4.

    The approximation is valid when \(\frac{qd}{\varepsilon _{0}A}<V_{0}\), which is true for small charge injections.

  5. 5.

    The unstable region in the frequency response of the resonators, above the critical linear amplitude.

  6. 6.

    Also, the slope of derivative of phase with respect to frequency, \(\mathrm {d}\phi /\mathrm {d}f\).

  7. 7.

    In this study [45], resonator 1 and 2 are defined as the resonator being directly driven by an AC drive voltage, and the resonator being driven through coupling, respectively.

References

  1. A.N. Cleland, M.L. Roukes, A nanometre-scale mechanical electrometer. Nature 392(6672), 160 (1998)

    Article  Google Scholar 

  2. J.E.Y. Lee, B. Bahreyni, A.A. Seshia, An axial strain modulated double-ended tuning fork electrometer. Sens. Actuators Phys. 148(2), 395–400 (2008)

    Article  Google Scholar 

  3. A.A. Seshia, M. Palaniapan, T.A. Roessig, R.T. Howe, R.W. Gooch, T.R. Schimert, S. Montague, A vacuum packaged surface micromachined resonant accelerometer. J. Microelectromech. Syst. 11(6), 784–793 (2002)

    Article  Google Scholar 

  4. R.H. Olsson, K.E. Wojciechowski, M.S. Baker, M.R. Tuck, J.G. Fleming, Post-CMOS-compatible aluminum nitride resonant MEMS accelerometers. J. Microelectromech. Syst. 18(3), 671–678 (2009)

    Article  Google Scholar 

  5. C. Comi, A. Corigliano, G. Langfelder, A. Longoni, A. Tocchio, B. Simoni, A resonant microaccelerometer with high sensitivity operating in an oscillating circuit. J. Microelectromech. Syst. 19(5), 1140–1152 (2010)

    Article  Google Scholar 

  6. X. Zou, P. Thiruvenkatanathan, A.A. Seshia, A seismic-grade resonant MEMS accelerometer. J. Microelectromech. Syst. 23(4), 768–770 (2014)

    Article  Google Scholar 

  7. D.D. Shin, C.H. Ahn, Y. Chen, D.L. Christensen, I.B. Flader, T.W. Kenny, Environmentally robust differential resonant accelerometer in a wafer-scale encapsulation process, in 2017 IEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS) (IEEE, 2017), pp. 17–20

    Google Scholar 

  8. Y. Yin, Z. Fang, F. Han, B. Yan, J. Dong, Q. Wu, Design and test of a micromachined resonant accelerometer with high scale factor and low noise. Sens. Actuators Phys. 268, 52–60 (2017)

    Article  Google Scholar 

  9. R. Sunier, T. Vancura, Y. Li, K.U. Kirstein, H. Baltes, O. Brand, Resonant magnetic field sensor with frequency output. J. Microelectromech. Syst. 15(5), 1098–1107 (2006)

    Article  Google Scholar 

  10. B. Bahreyni, C. Shafai, A resonant micromachined magnetic field sensor. IEEE Sens. J. 7(9), 1326–1334 (2007)

    Article  Google Scholar 

  11. M. Li, S. Nitzan, D.A. Horsley, Frequency-modulated Lorentz force magnetometer with enhanced sensitivity via mechanical amplification. IEEE Electron Device Lett. 36(1), 62–64 (2015)

    Article  Google Scholar 

  12. Y. Hui, T. Nan, N.X. Sun, M. Rinaldi, High resolution magnetometer based on a high frequency magnetoelectric MEMS-CMOS oscillator. J. Microelectromech. Syst. 24(1), 134–143 (2015)

    Article  Google Scholar 

  13. T.R. Albrecht, P. Grütter, D. Horne, D. Rugar, Frequency modulation detection using high-Q cantilevers for enhanced force microscope sensitivity. J. Appl. Phys. 69(2), 668–673 (1991)

    Article  Google Scholar 

  14. F.J. Giessibl, S. Hembacher, H. Bielefeldt, J. Mannhart, Subatomic features on the silicon (111)-(7Œ7) surface observed by atomic force microscopy. Science 289(5478), 422–425 (2000)

    Article  Google Scholar 

  15. J.A. Harley, T.W. Kenny, A high-stiffness axial resonant probe for atomic force microscopy. J. Microelectromech. Syst. 10(3), 434–441 (2001)

    Article  Google Scholar 

  16. E. Algre, Z. Xiong, M. Faucher, B. Walter, L. Buchaillot, B. Legrand, MEMS ring resonators for laserless AFM with sub-nanoNewton force resolution. J. Microelectromech. Syst. 21(2), 385–397 (2012)

    Article  Google Scholar 

  17. Y. Zhu, J.E.Y. Lee, A.A. Seshia, A resonant micromachined electrostatic charge sensor. IEEE Sens. J. 8(9), 1499–1505 (2008)

    Article  Google Scholar 

  18. C. Zhao, M. Pandit, G. Sobreviela, A. Mustafazade, S. Du, X. Zou, A. Seshia, On the noise optimization of resonant MEMS sensors utilizing vibration mode localization. Appl. Phys. Lett. 112(19), 194103 (2018)

    Article  Google Scholar 

  19. P. Thiruvenkatanathan, J. Yan, J. Woodhouse, A. Aziz, A.A. Seshia, Effects of mechanical and electrical coupling on the parametric sensitivity of mode localized sensors, in 2009 IEEE International Ultrasonics Symposium (IEEE, 2009), pp. 1183–1186

    Google Scholar 

  20. M. Spletzer, A. Raman, A.Q. Wu, X. Xu, R. Reifenberger, Ultrasensitive mass sensing using mode localization in coupled microcantilevers. Appl. Phys. Lett. 88(25), 254102 (2006)

    Article  Google Scholar 

  21. P. Thiruvenkatanathan, J. Yan, A.A. Seshia, Differential amplification of structural perturbations in weakly coupled MEMS resonators. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57(3), 690–697 (2010)

    Article  Google Scholar 

  22. M. Pandit, C. Zhao, G. Sobreviela, A.A. Seshia, Immunity to Temperature Fluctuations in Weakly Coupled MEMS Resonators, in 2018 IEEE Sensors (IEEE, 2018), pp. 1–4

    Google Scholar 

  23. C. Zhao, A MEMS sensor for stiffness change sensing applications based on three weakly coupled resonators, Doctoral dissertation, University of Southampton, 2016

    Google Scholar 

  24. H. Kang, J. Yang, H. Chang, A closed-loop accelerometer based on three degree-of-freedom weakly coupled resonator with self-elimination of feedthrough signal. IEEE Sens. J. 18(10), 3960–3967 (2018)

    Article  Google Scholar 

  25. C. Zhao, G.S. Wood, J. Xie, H. Chang, S.H. Pu, M. Kraft, A three degree-of-freedom weakly coupled resonator sensor with enhanced stiffness sensitivity. J. Microelectromech. Syst. 25(1), 38–51 (2016)

    Article  Google Scholar 

  26. H. Kang, J. Yang, H. Chang, A mode-localized accelerometer based on four degree-of-freedom weakly coupled resonators, in 2018 IEEE Micro Electro Mechanical Systems (MEMS) (IEEE, 2018), pp. 960–963

    Google Scholar 

  27. B. Peng, K.M. Hu, L. Shao, H. Yan, L. Li, X. Wei, W.M. Zhang, A sensitivity tunable accelerometer based on series-parallel electromechanically coupled resonators using mode localization. J. Microelectromech. Syst. (2019)

    Google Scholar 

  28. M. Spletzer, A. Raman, H. Sumali, J.P. Sullivan, Highly sensitive mass detection and identification using vibration localization in coupled microcantilever arrays. Appl. Phys. Lett. 92(11), 114102 (2008)

    Article  Google Scholar 

  29. P. Thiruvenkatanathan, J. Yan, A.A. Seshia, Ultrasensitive mode-localized micromechanical electrometer, in 2010 IEEE International Frequency Control Symposium (IEEE, 2010), pp. 91–96

    Google Scholar 

  30. P. Thiruvenkatanathan, J. Yan, J. Woodhouse, A. Aziz, A.A. Seshia, Ultrasensitive mode-localized mass sensor with electrically tunable parametric sensitivity. Appl. Phys. Lett. 96(8), 081913 (2010)

    Article  Google Scholar 

  31. R.N. Candler, A. Duwel, M. Varghese, S.A. Chandorkar, M.A. Hopcroft, W.T. Park, T.W. Kenny, Impact of geometry on thermoelastic dissipation in micromechanical resonant beams. J. Microelectromech. Syst. 15(4), 927–934 (2006)

    Article  Google Scholar 

  32. V. Kaajakari, T. Mattila, A. Oja, H.A.S.H. Seppa, Nonlinear limits for single-crystal silicon microresonators. J. Microelectromech. Syst. 13(5), 715–724 (2004)

    Article  Google Scholar 

  33. P. Thiruvenkatanathan, J. Yan, J. Woodhouse, A.A. Seshia, Enhancing parametric sensitivity in electrically coupled MEMS resonators. J. Microelectromech. Syst. 18(5), 1077–1086 (2009)

    Article  Google Scholar 

  34. M. Pandit, C. Zhao, G. Sobreviela, A. Mustafazade, X. Zou, A.A. Seshia, A mode-localized MEMS accelerometer with 7\(\mu \)g bias stability, in 2018 IEEE Micro Electro Mechanical Systems (MEMS) (IEEE, 2018), pp. 968–971

    Google Scholar 

  35. H. Zhang, W. Yuan, J. Huang, B. Li, H. Chang, A high-sensitive resonant electrometer based on mode localization of the weakly coupled resonators, in 2016 IEEE 29th International Conference on Micro Electro Mechanical Systems (MEMS) (IEEE, 2016), pp. 87–90

    Google Scholar 

  36. J. Yang, H. Kang, H. Chang, A micro resonant electrometer with 9-electron charge resolution in room temperature, in 2018 IEEE Micro Electro Mechanical Systems (MEMS) (IEEE, 2018), pp. 67–70

    Google Scholar 

  37. T.A.W. Roessig, Integrated MEMS tuning fork oscillators for sensor applications. Ph.D. thesis, UC Berkely, 1999

    Google Scholar 

  38. C. Zhao, M. Pandit, G. Sobreviela, A. Mustafazade, S. Du, X. Zou, A. Seshia, Supplementary: on the noise optimization of resonant MEMS sensors utilizing vibration mode localization. Appl. Phys. Lett. 112(19), 194103 (2018)

    Article  Google Scholar 

  39. C. Zhao, M. Pandit, B. Sun, G. Sobreviela, X. Zou, A. Seshia, A closed-loop readout configuration for mode-localized resonant MEMS sensors. J. Microelectromech. Syst. 26(3), 501–503 (2017)

    Article  Google Scholar 

  40. M. Pandit, C. Zhao, G. Sobreviela, A. Mustafazade, S. Du, X. Zou, A.A. Seshia, Closed-loop characterization of noise and stability in a mode-localized resonant MEMS sensor. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 66(1), 170–180 (2019)

    Article  Google Scholar 

  41. C. Zhao, G.S. Wood, J. Xie, H. Chang, S.H. Pu, M. Kraft, A comparative study of output metrics for an MEMS resonant sensor consisting of three weakly coupled resonators. J. Microelectromech. Syst. 25(4), 626–636 (2016)

    Article  Google Scholar 

  42. H.K. Lee, R. Melamud, S. Chandorkar, J. Salvia, S. Yoneoka, T.W. Kenny, Stable operation of MEMS oscillators far above the critical vibration amplitude in the nonlinear regime. J. Microelectromech. Syst. 20(6), 1228–1230 (2011)

    Article  Google Scholar 

  43. L.G. Villanueva, E. Kenig, R.B. Karabalin, M.H. Matheny, R. Lifshitz, M.C. Cross, M.L. Roukes, Surpassing fundamental limits of oscillators using nonlinear resonators. Phys. Rev. Lett. 110(17), 177208 (2013)

    Article  Google Scholar 

  44. M. Pandit, C. Zhao, G. Sobreviela, S. Du, X. Zou, A. Seshia, Utilizing energy localization in weakly coupled nonlinear resonators for sensing applications. J. Microelectromech. Syst. (2019)

    Google Scholar 

  45. C. Zhao, G. Sobreviela, M. Pandit, S. Du, X. Zou, A. Seshia, Experimental observation of noise reduction in weakly coupled nonlinear MEMS resonators. J. Microelectromech. Syst. 26(6), 1196–1203 (2017)

    Article  Google Scholar 

  46. J. Juillard, P. Prache, N. Barniol, Analysis of mutually injection-locked oscillators for differential resonant sensing. IEEE Trans. Circ. Syst. I Regul. Pap. 63(7), 1055–1066 (2016)

    Article  MathSciNet  Google Scholar 

  47. P. Prache, A. Uranga, N. Barniol, J. Juillard, Temperature-drift rejection and sensitivity to mismatch of synchronized strongly-coupled M/NEMS resonators, in 2016 IEEE 29th International Conference on Micro Electro Mechanical Systems (MEMS) (IEEE, 2016), pp. 1054–1057

    Google Scholar 

  48. P. Prache, J. Juillard, P.M. Ferreira, N. Barniol, M. Riverola, Design and characterization of a monolithic CMOS-MEMS mutually injection-locked oscillator for differential resonant sensing. Sens. Actuators Phys. 269, 160–170 (2018)

    Article  Google Scholar 

  49. J. Juillard, P. Prache, P.M. Ferreira, N. Barniol, Ultimate limits of differential resonant MEMS sensors based on two coupled linear resonators. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65(12), 2440–2448 (2018)

    Article  Google Scholar 

  50. J. Juillard, A. Mostafa, P.M. Ferreira, Nonlinear enhancement of locking range of mutually injection-locked oscillators for resonant sensing applications, in 2018 European Frequency and Time Forum (EFTF) (IEEE, 2018), pp. 109–113

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhao, C., Liu, H., Song, P., Hu, F. (2020). Micro-electrometer Based on Mode-Localization Effect. In: Zhu, Y. (eds) Micro and Nano Machined Electrometers. Springer, Singapore. https://doi.org/10.1007/978-981-13-3247-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-3247-0_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-3246-3

  • Online ISBN: 978-981-13-3247-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics