Skip to main content

External Representations and the Design of Seamless Learning Systems

Toward a Conceptual Framework to Analyze Empirical Evidence Regarding Learning Benefits

  • Chapter
  • First Online:
  • 663 Accesses

Part of the book series: Lecture Notes in Educational Technology ((LNET))

Abstract

Current trends in technology-enhanced learning highlight the increasing importance of mobile digital tools in learning scenarios; seamless learning, or learning that spans contexts and activities within and without the classroom, is becoming mainstream. Despite the growing body of the literature in this area, this chapter highlights a general focus on technological issues and perspectives and a lack of theoretically driven discussion. We argue that theoretically/conceptually inspired literature reviews covering pedagogy and cognitive aspects of learning are currently needed to establish a grounded framework for future research in this area. This paper contributes one such analysis—it proposes and reflects on the issues raised when considering seamless learning from the perspective of the established literature on external representations (ERs), a core concept in distributed or embodied accounts of cognition. Core issues we discuss are: (a) what are the challenges facing seamless learning from an ERs perspective? (b) how can knowledge about ERs be applied to seamless learning systems?, and (c) what methodological challenges will emerge if seamless learning systems are studied from the perspective of ERs? This discussion is intended as a bridge between practical and applied work in seamless learning and theoretical or laboratory-based work in ERs—it seeks to drive the field of seamless learning forward by highlighting best practices from an established theoretical perspective. By elaborating on a theoretically grounded lens, we seek to empower researchers to identify promising approaches for the design and evaluation of next-generation high impact seamless learning solutions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ainsworth, S. (1999a). A functional taxonomy of multiple representations. Computers & Education, 33(2–3), 131–152.

    Article  Google Scholar 

  • Ainsworth, S. (1999b). Designing effective multi-representational learning systems. Nottingham: Centre for Research in Development, Instruction and Training, School of Psychology, University of Nottingham.

    Google Scholar 

  • Ainsworth, S., & VanLabeke, N. (2004). Multiple forms of dynamic representation. Learning and Instruction, 14(3), 241–255.

    Article  Google Scholar 

  • Ainsworth, S., Bibby, P. A., & Wood, D. (1998). Analysing the costs and benefits of multi-representational learning environments. In M. W. van Someren, P. Reimann, H. P. A. Boshuizen, & T. de Jon (Eds.), Learning with multiple representations (pp. 120–136). Amsterdam: Pergamon.

    Google Scholar 

  • Akçayır, M., & Akçayır, G. (2017). Advantages and challenges associated with augmented reality for education: A systematic review of the literature. Educational Research Review, 20, 1–11.

    Article  Google Scholar 

  • Arcavi, A. (2003). The role of visual representations in the learning of mathematics. Educational Studies in Mathematics, 52(3), 215–241.

    Article  Google Scholar 

  • Blackwell, A. F., Whitley, K. N., Good, J., & Petre, M. (2001). Cognitive factors in programming with diagrams. Artificial Intelligence Review, 95, 95–114.

    Article  Google Scholar 

  • Bodemer, D., Ploetzner, R., Feuerlein, I., & Spada, H. (2004). The active integration of information during learning with dynamic and interactive visualisations. Learning and Instruction, 14(3), 341.

    Article  Google Scholar 

  • Boucheix, J.-M., Lowe, R. K., Putri, D. K., & Groff, J. (2013). Cueing animations: Dynamic signaling aids information extraction and comprehension. Learning and Instruction, 25(C), 71–84. https://doi.org/10.1016/j.learninstruc.2012.11.005.

    Article  Google Scholar 

  • Burigat, S., Chittaro, L., & Parlato, E. (2008). Map, diagram, and web page navigation on mobile devices: The effectiveness of zoomable user interfaces with overviews. Presented at the Proceedings of the 10th International Conference on Human Computer Interaction with Mobile Devices and Services (pp. 147–156). ACM.

    Google Scholar 

  • Byrne, M. D., Catrambone, R., & Stasko, J. T. (1999). Evaluating animations as student aids in learning computer algorithms. Computers & Education, 33(4), 253–278.

    Article  Google Scholar 

  • Chan, T.-W., Roschelle, J., Hsi, S., Kinshuk, K., Sharples, M., Brown, T., … Milrad, M. (2006). One-to-one technology-enhanced learning: An opportunity for global research collaboration. Research and Practice in Technology Enhanced Learning, 1(1), 3–29. https://doi.org/10.1142/S1793206806000032.

    Article  Google Scholar 

  • Cheng, P. C. H. (1998). Law encoding diagrams as support for science learning. Z. Padagog. Psychol., 12(2–3), 100–111.

    Google Scholar 

  • Chittaro, L. (2006). Visualizing information on mobile devices. Computer, 39(3), 40–45.

    Article  Google Scholar 

  • Cox, R. (1999). Representation construction, externalised cognition and individual differences. Learning and Instruction, 9(4), 343–363.

    Article  Google Scholar 

  • Cox, R., & Brna, P. (1994). Analytical reasoning with external representations: Supporting the stages of selection, construction and use. University of Edinburgh Department of Artificial Intelligence.

    Google Scholar 

  • de Vries, E. (2006). Students’ construction of external representations in design-based learning situations. Learning and Instruction, 16(3), 213–227.

    Article  Google Scholar 

  • de Jong, T., Ainsworth, S., Dobson, M., van der Hulst, A., Levonen, J., Reimann, P., … Swaak, J. (1998). Acquiring knowledge in science and mathematics: The use of multiple representations in technology-based learning environments. In M. W. Van Someren, P. Reimann, H. P. A. Boshuizen, & T. de Jong (Eds.), Learning with multiple representations. Amsterdam: Pergamon.

    Google Scholar 

  • Dillenbourg, P., & Betrancourt, M. (2006). Collaborative load. In J. Elen & R. E. Clark (Eds.), Handling complexity in learning environments: Theory and research. Oxford, UK: Emerald Group Publishing.

    Google Scholar 

  • Fischer, F., & Mandl, H. (2005). Knowledge convergence in computer-supported collaborative learning: The role of external representations tools. The Journal of the Learning Sciences, 14(3), 405–441.

    Article  Google Scholar 

  • Fischer, F., Bruhn, J., Gräsel, C., & Mandl, H. (2002). Fostering collaborative knowledge construction with visualization tools. Learning and Instruction, 12(2), 213–232. https://doi.org/10.1016/S0959-4752(01)00005-6.

    Article  Google Scholar 

  • Frohberg, D., Göth, C., & Schwabe, G. (2009). Mobile Learning projects—A critical analysis of the state of the art. Journal of Computer Assisted learning, 25(4), 307–331. https://doi.org/10.1111/j.1365-2729.2009.00315.x.

    Article  Google Scholar 

  • Greenberg, S., Marquardt, N., Ballendat, T., Diaz-Marino, R., & Wang, M. (2011). Proxemic interactions: The new ubicomp? Interactions, 18(1), 42–50.

    Article  Google Scholar 

  • Harrison, S., & Dourish, P. (1996). Re-place-ing space: The roles of place and space in collaborative systems. In Proceedings of the 1996 ACM Conference on Computer Supported Cooperative Work (pp. 67–76). Boston, MA, USA: ACM. https://doi.org/10.1145/240080.240193.

  • Hegarty, M. (2004). Dynamic visualizations and learning: Getting to the difficult questions. Learning and Instruction, 14(3), 343–351.

    Article  Google Scholar 

  • Hegarty, M., & Steinhoff, K. (1997). Individual differences in use of diagrams as external memory in mechanical reasoning. Learning and Individual Differences, 9(1), 19–42.

    Article  Google Scholar 

  • Hollan, J., Hutchins, E., & Kirsh, D. (2002). Distributed cognition: Toward a new foundation for human-computer interaction research. In R. Shaw & J. Bransford (Eds.), Human-computer interaction in the new millenium (pp. 75–94). New York: ACM Press.

    Google Scholar 

  • Hornecker, E., & Buur, J. (2006). Getting a grip on tangible interaction: A framework on physical space and social interaction. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 437–446). New York, NY, USA: ACM. https://doi.org/10.1145/1124772.1124838.

  • Hutchins, E. (1995). Cognition in the wild. Bradford: MIT Press.

    Google Scholar 

  • Hwang, G., & Tsai, C. (2011). Research trends in mobile and ubiquitous learning: A review of publications in selected journals from 2001 to 2010. British Journal of Educational Technology, 42(4), E65–E70.

    Article  Google Scholar 

  • Ishii, H., & Ullmer, B. (1997). Tangible bits: Towards seamless interfaces between people, bits and atoms. Presented at the Proceedings of the ACM SIGCHI Conference on Human Factors in Computing Systems (pp. 234–241). ACM.

    Google Scholar 

  • José, R., Otero, N., Izadi, S., & Harper, R. (2008). Instant places: Using bluetooth for situated interaction in public displays. Pervasive Computing, IEEE, 7(4), 52–57.

    Article  Google Scholar 

  • Kim, B., & Reeves, T. C. (2007). Reframing research on learning with technology: In search of the meaning of cognitive tools. Instructional Science, 35(3), 207–256. https://doi.org/10.1007/s11251-006-9005-2.

    Article  Google Scholar 

  • Kirsh, D. (2010). Thinking with external representations. AI & Society, 25(4), 441–454. https://doi.org/10.1007/s00146-010-0272-8.

    Article  Google Scholar 

  • Kohen-Vacs, D., & Ronen, M. (2015). Fragmented yet seamless: System integration for supporting cross-context CSCL scripts. In L.-H Wong, M. Milrad & M. Specht (Eds.), Seamless learning in the age of mobile connectivity (pp. 439–452). Singapore: Springer.

    Google Scholar 

  • Kozma, R. (2003). The material features of multiple representations and their cognitive and social affordances for science understanding. Learning and Instruction, 13(2), 205–226.

    Article  Google Scholar 

  • Larkin, J., & Simon, H. (1987). Why a diagram (sometimes) worth ten thousand words. Cognitive Science, 11, 65–99.

    Article  Google Scholar 

  • Laru, J., Näykki, P., & Järvelä, S. (2015). Four stages of research on the educational use of ubiquitous computing. IEEE Transactions on Learning Technologies, 8(1), 69–82. https://doi.org/10.1109/TLT.2014.2360862.

    Article  Google Scholar 

  • Looi, C.-K., Seow, P., Zhang, B., So, H.-J., Chen, W., & Wong, L.-H. (2009). Leveraging mobile technology for sustainable seamless learning: A research agenda. British Journal of Educational Technology, 41(2), 154–169. https://doi.org/10.1111/j.1467-8535.2008.00912.x.

    Article  Google Scholar 

  • Lowe, R. K. (1996). Background knowledge and the construction of a situational representation from a diagram. European Journal of Psychology of Education, 11(4), 377–397.

    Article  Google Scholar 

  • Lowe, R. K. (2003). Animation and learning: Selective processing of information in dynamic graphics. Learning and Instruction, 13(2), 157–176.

    Article  Google Scholar 

  • Lucke, U., & Rensing, C. (2014). A survey on pervasive education. Pervasive and Mobile Computing, 14(Suppl. C), 3–16. https://doi.org/10.1016/j.pmcj.2013.12.001.

    Article  Google Scholar 

  • Marshall, P. (2007). Do tangible interfaces enhance learning? In Proceedings of the 1st International Conference on Tangible and Embedded Interaction (pp. 163–170). New York, NY, USA: ACM. https://doi.org/10.1145/1226969.1227004.

  • Otero, N., Rogers, Y., & Du Boulay, B. (2001). Is interactivity a good thing? Assessing its benefits for learning. In M. Smith & G. Salvendy (Eds.), Systems, social and internationalization design aspects of human-computer interaction (pp. 790–794). New Jersey: Lawrence Erlbaum.

    Google Scholar 

  • Otero, N., Müller, M., Alissandrakis, A., & Milrad, M. (2013). Exploring video-based interactions around digital public displays to foster curiosity about science in schools. Presented at the Proceedings of ACM International Symposium on Pervasive Displays (pp. 4–5).

    Google Scholar 

  • Otero, N., Milrad, M., Rogers, Y., Santos, A. J., Veríssimo, M., & Torres, N. (2011). Challenges in designing seamless learning scenarios: Affective and emotional effects on external representations. International Journal of Mobile Learning and Organisation, 5(1), 15–27.

    Article  Google Scholar 

  • Paivio, A. (1990). Mental representations a dual coding approach. New York: Oxford University Press.

    Chapter  Google Scholar 

  • Palmer, S. E. (1977). Fundamental aspects of cognitive representation. In E. Rosch & B. B. Lloyd (Eds.), Cognition and categorization. Hillsdale, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Perry, M. (2003). Distributed cognition. In J. M. Carroll (Ed.), HCI models, theories, and frameworks: Toward a multidisciplinary science (pp. 193–223), San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.

    Chapter  Google Scholar 

  • Rogers, Y., & Price, S. (2009). How mobile technologies are changing the way children learn. In A. Druin (Ed.), Mobile technology for children (pp. 3–22). San Francisco, CA: Morgan Kaufmann.

    Google Scholar 

  • Rogers, Y., & Rodden, T. (2003). Configuring spaces and surfaces to support collaborative interactions. In Public and situated displays (pp. 45–79). Dordrecht: Springer. Retrieved from https://link.springer.com/chapter/10.1007/978-94-017-2813-3_3.

    Chapter  Google Scholar 

  • Rogers, Y., & Scaife, M. (1998). How can interactive multimedia facilitate learning? In J. Lee (Ed.), Intelligence and multimodality in multimedia interfaces: Research applications. Menlo Park, CA: AAAI Press.

    Google Scholar 

  • Rossitto, C., & Eklundh, K. S. (2007). Managing work at several places: A case of project work in a nomadic group of students. In Proceedings of the 14th European Conference on Cognitive Ergonomics: Invent! Explore! (pp. 45–51). New York, NY, USA: ACM. https://doi.org/10.1145/1362550.1362562.

  • Salomon, G. (1993a). Distributed cognitions: Psychological and educational considerations. Cambridge: Cambridge University Press.

    Google Scholar 

  • Salomon, G. (1993b). No distribution without individuals’ cognition: A dynamical interactional view. In G. Salomon (Ed.), Distributed cognitions: Psychological and educational considerations (pp. 111–138). Cambridge: Cambridge University Press.

    Google Scholar 

  • Sawyer, R. K., & Greeno, J. G. (2009). Situativity and learning. In P. Robbins & M. Aydede (Eds.), The Cambridge handbook of situated cognition (pp. 347–367). Cambridge: Cambridge University Press.

    Google Scholar 

  • Scaife, M., & Rogers, Y. (1996). External cognition: How do graphical representations work? International Journal of Human-Computer Studies, 45(2), 185–213.

    Article  Google Scholar 

  • Sharples, M., Arnedillo-Sánchez, I., Milrad, M., & Vavoula, G. (2009). Mobile learning. In Technology-enhanced learning (pp. 233–249). Dordrecht: Springer. Retrieved from https://link.springer.com/chapter/10.1007/978-1-4020-9827-7_14.

    Chapter  Google Scholar 

  • Sharples, M., Milrad, M., Arnedillo-Sanchez, I., & Vavoula, G. (2009b). Mobile learning: Small devices, big issues. In N. Balacheff, S. Ludvigsen, T. de Jong, A. Lazonder, & S. Barnes (Eds.), Technology enhanced learning: Principles and products (pp. 233–249). Berlin: Springer.

    Chapter  Google Scholar 

  • Sollervall, H., Otero, N., Milrad, M., Johansson, D., & Vogel, B. (2012). Outdoor activities for the learning of mathematics: Designing with mobile technologies for transitions across learning contexts. In 2012 IEEE Seventh International Conference on Wireless, Mobile and Ubiquitous Technology in Education (WMUTE) (pp. 33–40). IEEE.

    Google Scholar 

  • Spikol, D., & Milrad, M. (2008). Physical activities and playful learning using mobile games. Research and Practice in Technology Enhanced Learning, 3(3), 275–295.

    Article  Google Scholar 

  • Sung, Y.-T., Chang, K.-E., & Liu, T.-C. (2016). The effects of integrating mobile devices with teaching and learning on students’ learning performance: A meta-analysis and research synthesis. Computers & Education, 94(Suppl. C), 252–275. https://doi.org/10.1016/j.compedu.2015.11.008.

    Article  Google Scholar 

  • Sweller, J., Van Merrienboer, J. J., & Paas, F. G. (1998). Cognitive architecture and instructional design. Educational Psychology Review, 10(3), 251–296.

    Article  Google Scholar 

  • Terrenghi, L., Quigley, A., & Dix, A. (2009). A taxonomy for and analysis of multi-person-display ecosystems. Personal and Ubiquitous Computing, 13(8), 583.

    Article  Google Scholar 

  • Vavoula, G., & Sharples, M. (2009). Meeting the challenges in evaluating mobile learning: A 3-level evaluation framework. International Journal of Mobile and Blended Learning, 1(2), 54–75. https://doi.org/10.4018/jmbl.2009040104.

    Article  Google Scholar 

  • White, T., & Pea, R. (2011). Distributed by design: On the promises and pitfalls of collaborative learning with multiple representations. Journal of the Learning Sciences, 20(3), 489–547.

    Article  Google Scholar 

  • Wong, L.-H. (2015). A brief history of mobile seamless learning. In Seamless learning in the age of mobile connectivity (pp. 3–40). Singapore: Springer. Retrieved from https://link.springer.com/chapter/10.1007/978-981-287-113-8_1.

    Google Scholar 

  • Wong, L.-H., & Looi, C.-K. (2011). What seams do we remove in mobile-assisted seamless learning? A critical review of the literature. Computers & Education, 57(4), 2364–2381. https://doi.org/10.1016/j.compedu.2011.06.007.

    Article  Google Scholar 

  • Wu, W.-H., Jim Wu, Y.-C., Chen, C.-Y., Kao, H.-Y., Lin, C.-H., & Huang, S.-H. (2012). Review of trends from mobile learning studies: A meta-analysis. Computers & Education, 59(2), 817–827. https://doi.org/10.1016/j.compedu.2012.03.016.

    Article  Google Scholar 

  • Wu, W.-H., Wu, Y.-C. J., Chen, C.-Y., Kao, H.-Y., Lin, C.-H., & Huang, S.-H. (2012). Review of trends from mobile learning studies: A meta-analysis. Computers & Education, 59(2), 817–827.

    Article  Google Scholar 

  • Zhang, J. J. (1997). The nature of external representations in problem solving. Cognitive Science, 21(2), 179–217.

    Article  Google Scholar 

  • Zhang, J. J., & Norman, D. A. (1994). Representations in distributed cognitive tasks. Cognitive Science, 18(1), 87–122.

    Article  Google Scholar 

  • Zhang, J., & Patel, V. L. (2006). Distributed cognition, representation, and affordance. Cognition and Pragmatics, 14(2), 333–341.

    Article  Google Scholar 

  • Zydney, J. M., & Warner, Z. (2016). Mobile apps for science learning: Review of research. Computers & Education, 94, 1–17.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nuno Otero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Otero, N., Oakley, I. (2019). External Representations and the Design of Seamless Learning Systems. In: Looi, CK., Wong, LH., Glahn, C., Cai, S. (eds) Seamless Learning. Lecture Notes in Educational Technology. Springer, Singapore. https://doi.org/10.1007/978-981-13-3071-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-3071-1_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-3070-4

  • Online ISBN: 978-981-13-3071-1

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics