Skip to main content

Vitamin C: A Natural Inhibitor of Cell Wall Functions and Stress Response in Mycobacteria

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1112))

Abstract

Tuberculosis, caused by Mycobacterium tuberculosis, has re-emerged as a threat to human race. Conventional antibiotic treatments are failing due to different stress response strategies adopted by bacterial pathogens. Since time immemorial, Vitamin C is known to protect against pathogens by boosting immunity in humans. Recently, Vitamin C has been shown to directly kill M. tuberculosis including multiple drug-resistant strains by generation of oxidative radicals through Fenton’s reaction. Concurrently, it inhibits (p)ppGpp-mediated stringent response thus effectively shutting down long-term survival and persistence in mycobacteria. Here, we have discussed historical perspective and recent evidences on Vitamin C-mediated inhibition of several key pathways of M. tuberculosis such as (p)ppGpp synthesis and mycobacterial cell wall function. Several cell wall components including mycolic acids are critical for mycobacterial virulence. We observed downregulation of various mycolic acids in M. smegmatis upon treatment with Vitamin C, and data have been presented here. Vitamin C has been shown to inhibit the biofilm growth as well as disrupt the formed biofilm in mycobacteria. Additionally, Vitamin C role in cell-mediated and humoral immunity has been elucidated. Vitamin C is toxic at high concentration; therefore we have proposed the idea of derivatizing Vitamin C in order to lower the minimal inhibition concentration (MIC) necessary to target M. tuberculosis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

(p)ppGpp:

Guanosine tetraphosphate or guanosine pentaphosphate

C1q:

Complement component 1, q subcomponent

MDR:

Multidrug resistant

NK cells:

Natural killer cells

RF3:

Release factor 3

RNAP or RNA Pol:

RNA polymerase

RNS:

Reactive nitrogen species

ROS:

Reactive oxygen species

TLC:

Thin-layer chromatography

XDR:

Extensively drug resistant

References

  • Aisen P, Enns C, Wessling-Resnick M (2001) Chemistry and biology of eukaryotic iron metabolism. Int J Biochem Cell Biol 33 (10):940–959. doi: S1357-2725(01)00063-2 [pii]

    Google Scholar 

  • Awotedu AA, Sofowora EO, Ette SI (1984) Ascorbic acid deficiency in pulmonary tuberculosis. East Afr Med J 61(4):283–287

    CAS  PubMed  Google Scholar 

  • Badr G, Bashandy S, Ebaid H, Mohany M, Sayed D (2012) Vitamin C supplementation reconstitutes polyfunctional T cells in streptozotocin-induced diabetic rats. Eur J Nutr 51(5):623–633. https://doi.org/10.1007/s00394-011-0176-5

    Article  CAS  PubMed  Google Scholar 

  • Basaraba RJ, Ojha AK (2017) Mycobacterial biofilms: revisiting tuberculosis bacilli in extracellular necrotizing lesions. Microbiol Spectr 5(3). https://doi.org/10.1128/microbiolspec.TBTB2-0024-2016

  • Berger MM, Oudemans-van Straaten HM (2015) Vitamin C supplementation in the critically ill patient. Curr Opin Clin Nutr Metab Care 18(2):193–201. https://doi.org/10.1097/MCO.0000000000000148

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharya S (2015) Reactive oxygen species and cellular defense system. In: Rani V, Yadav UCS (eds) Free radicals in human health and disease. Springer, New Delhi, pp 17–29. https://doi.org/10.1007/978-81-322-2035-0_2

    Chapter  Google Scholar 

  • Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O (2012) Oxidative stress and antioxidant defense. World Allergy Organ J 5(1):9–19. https://doi.org/10.1097/WOX.0b013e3182439613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braedt G, Gallant J (1977) Role of the rel gene product in the control of cyclic adenosine 3′,5′-monophosphate accumulation. J Bacteriol 129(1):564–566

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carr AC, Maggini S (2017) Vitamin C and immune function. Nutrients 9(11). doi: nu9111211 [pii]10.3390/nu9111211

    Google Scholar 

  • Cashel M, Gallant J (1969) Two compounds implicated in the function of the RC gene of Escherichia coli. Nature 221(5183):838–841

    Article  CAS  Google Scholar 

  • Chakraborty S, Syal K, Bhattacharyya R, Banerjee D (2014) Vitamin deficiency and tuberculosis: need for urgent clinical trial for management of tuberculosis. J Nutr Health Food Sci 2(2):1–6

    Google Scholar 

  • Chambial S, Dwivedi S, Shukla KK, John PJ, Sharma P (2013) Vitamin C in disease prevention and cure: an overview. Indian J Clin Biochem 28(4):314–328. https://doi.org/10.1007/s12291-013-0375-3375 pii

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dunn ME (1945) A Study of Vitamin C Deficiency in Patients with Pulmonary Tuberculosis. Ulster Med J 14(1):17–33

    CAS  PubMed  PubMed Central  Google Scholar 

  • Glass RE, Jones ST, Ishihama A (1986) Genetic studies on the beta subunit of Escherichia coli RNA polymerase. VII. RNA polymerase is a target for ppGpp. Mol Gen Genet 203(2):265–268

    Article  CAS  Google Scholar 

  • Hemila H (1997) Vitamin C supplementation and the common cold--was Linus Pauling right or wrong? Int J Vitam Nutr Res 67(5):329–335

    CAS  PubMed  Google Scholar 

  • Hemila H (2017) Vitamin C and infections. Nutrients 9(4): 339. doi: nu9040339 [pii]10.3390/nu9040339

    Google Scholar 

  • Hemila H, Louhiala P (2007) Vitamin C may affect lung infections. J R Soc Med 100(11):495–498. doi: 100/11/495 [pii]10.1177/014107680710001109

    Google Scholar 

  • Heuser G, Vojdani A (1997) Enhancement of natural killer cell activity and T and B cell function by buffered vitamin C in patients exposed to toxic chemicals: the role of protein kinase-C. Immunopharmacol Immunotoxicol 19(3):291–312. https://doi.org/10.3109/08923979709046977

    Article  CAS  PubMed  Google Scholar 

  • Hogg T, Mechold U, Malke H, Cashel M, Hilgenfeld R (2004) Conformational antagonism between opposing active sites in a bifunctional RelA/SpoT homolog modulates (p)ppGpp metabolism during the stringent response [corrected]. Cell 117(1):57–68. doi: S0092867404002600 [pii]

    Google Scholar 

  • Institute of Medicine (US) Panel on Dietary Antioxidants and Related Compounds (2000) Dietary reference intakes for vitamin C, vitamin E, selenium, and carotenoids. Washington, DC

    Google Scholar 

  • Jain V, Saleem-Batcha R, Chatterji D (2007) Synthesis and hydrolysis of pppGpp in mycobacteria: A ligand mediated conformational switch in Rel. Biophys Chem 127(1–2):41–50. https://doi.org/10.1016/j.bpc.2006.12.003

    Article  CAS  PubMed  Google Scholar 

  • Johnston CS, Kolb WP, Haskell BE (1987) The effect of vitamin C nutriture on complement component C1q concentrations in guinea pig plasma. J Nutr 117(4):764–768

    Article  CAS  Google Scholar 

  • Jores L, Wagner R (2003) Essential steps in the ppGpp-dependent regulation of bacterial ribosomal RNA promoters can be explained by substrate competition. J Biol Chem 278(19):16834–16843. doi:10.1074/jbc.M300196200M300196200 [pii]

    Google Scholar 

  • Kanjee U, Gutsche I, Alexopoulos E, Zhao B, El Bakkouri M, Thibault G, Liu K, Ramachandran S, Snider J, Pai EF, Houry WA (2011) Linkage between the bacterial acid stress and stringent responses: the structure of the inducible lysine decarboxylase. EMBO J 30(5):931–944. doi: emboj20115 [pii]10.1038/emboj.2011.5

    Google Scholar 

  • Kihira K, Shimizu Y, Shomura Y, Shibata N, Kitamura M, Nakagawa A, Ueda T, Ochi K, Higuchi Y (2012) Crystal structure analysis of the translation factor RF3 (release factor 3). FEBS Lett 586(20):3705–3709. doi: S0014-5793(12)00686-2 [pii]10.1016/j.febslet.2012.08.029

    Google Scholar 

  • Klinkenberg LG, Lee JH, Bishai WR, Karakousis PC (2010) The stringent response is required for full virulence of Mycobacterium tuberculosis in guinea pigs. J Infect Dis 202(9):1397–1404. https://doi.org/10.1086/656524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar V, Chen Y, Ero R, Ahmed T, Tan J, Li Z, Wong AS, Bhushan S, Gao YG (2015) Structure of BipA in GTP form bound to the ratcheted ribosome. Proc Natl Acad Sci U S A 112(35):10944–10949. doi: 1513216112 [pii]10.1073/pnas.1513216112

    Google Scholar 

  • Lehninger A, Nelson D, Cox M (2008) Lehninger principles of biochemistry. W. H. Freeman. doi: citeulike-article-id:3823091

    Google Scholar 

  • Little R, Ryals J, Bremer H (1983) rpoB mutation in Escherichia coli alters control of ribosome synthesis by guanosine tetraphosphate. J Bacteriol 154(2):787–792

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu K, Myers AR, Pisithkul T, Claas KR, Satyshur KA, Amador-Noguez D, Keck JL, Wang JD (2015) Molecular mechanism and evolution of guanylate kinase regulation by (p)ppGpp. Mol Cell 57 (4):735–749. doi: S1097-2765(14)01015-6 [pii]10.1016/j.molcel.2014.12.037

    Google Scholar 

  • Liu H, Xiao Y, Nie H, Huang Q, Chen W (2017) Influence of (p)ppGpp on biofilm regulation in Pseudomonas putida KT2440. Microbiol Res 204:1–8. doi: S0944-5013(16)30672-3 [pii]10.1016/j.micres.2017.07.003

    Google Scholar 

  • Maiti K, Syal K, Chatterji D, Jayaraman N (2017) Synthetic Arabinomannan Heptasaccharide Glycolipids Inhibit Biofilm Growth and Augment Isoniazid Effects in Mycobacterium smegmatis. Chembiochem 18(19):1959–1970. https://doi.org/10.1002/cbic.201700247

    Article  CAS  PubMed  Google Scholar 

  • Mechold U, Potrykus K, Murphy H, Murakami KS, Cashel M (2013) Differential regulation by ppGpp versus pppGpp in Escherichia coli. Nucleic Acids Res 41 (12):6175–6189. doi: gkt302 [pii]10.1093/nar/gkt302

    Google Scholar 

  • Mishra A, Sarkar D (2015) Qualitative and quantitative proteomic analysis of Vitamin C induced changes in Mycobacterium smegmatis. Front Microbiol 6:451. https://doi.org/10.3389/fmicb.2015.00451

    Article  PubMed  PubMed Central  Google Scholar 

  • Naresh K, Avaji PG, Maiti K, Bharati BK, Syal K, Chatterji D, Jayaraman N (2012) Synthesis of beta-arabinofuranoside glycolipids, studies of their binding to surfactant protein-A and effect on sliding motilities of M. smegmatis. Glycoconj J 29(2–3):107–118. https://doi.org/10.1007/s10719-012-9369-2

    Article  CAS  PubMed  Google Scholar 

  • Nunes-Alves C (2014) Targeting (p)ppGpp disrupts biofilms. Nat Rev Microbiol 12:461. https://doi.org/10.1038/nrmicro3302

    Article  CAS  Google Scholar 

  • Padayatty SJ, Riordan HD, Hewitt SM, Katz A, Hoffer LJ, Levine M (2006) Intravenously administered vitamin C as cancer therapy: three cases. CMAJ 174(7):937–942. doi: 174/7/937 [pii]10.1503/cmaj.050346

    Google Scholar 

  • Perederina A, Svetlov V, Vassylyeva MN, Tahirov TH, Yokoyama S, Artsimovitch I, Vassylyev DG (2004) Regulation through the secondary channel--structural framework for ppGpp-DksA synergism during transcription. Cell 118(3):297–309. doi: 10.1016/j.cell.2004.06.030S0092867404006270 [pii]

    Google Scholar 

  • Reddy PS, Raghavan A, Chatterji D (1995) Evidence for a ppGpp-binding site on Escherichia coli RNA polymerase: proximity relationship with the rifampicin-binding domain. Mol Microbiol 15(2):255–265

    Article  CAS  Google Scholar 

  • Reddy PV, Puri RV, Chauhan P, Kar R, Rohilla A, Khera A, Tyagi AK (2013) Disruption of Mycobactin Biosynthesis Leads to Attenuation of Mycobacterium tuberculosis for Growth and Virulence. J Infect Dis 208(8):1255–1265

    Article  CAS  Google Scholar 

  • Ross W, Vrentas CE, Sanchez-Vazquez P, Gaal T, Gourse RL (2013) The magic spot: a ppGpp binding site on E. coli RNA polymerase responsible for regulation of transcription initiation. Mol Cell 50(3):420–429. doi:S1097–2765(13)00249–9 [pii]10.1016/j.molcel.2013.03.021

    Google Scholar 

  • Sargazi A, Gharebagh RA, Aali H, Oskoee HO, Sepehri Z (2017) Role of essential trace elements in tuberculosis infection: A review article. Indian J Tuberc 64(4):246–251. doi: S00195707(16)30296-7 [pii]10.1016/j.ijtb.2017.03.003

    Google Scholar 

  • Sikri K, Batra SD, Nandi M, Kumari P, Taneja NK, Tyagi JS (2015) The pleiotropic transcriptional response of Mycobacterium tuberculosis to vitamin C is robust and overlaps with the bacterial response to multiple intracellular stresses. Microbiology 161(Pt 4):739–753. doi: mic.0.000049 [pii]10.1099/mic.0.000049

    Google Scholar 

  • Soh AZ, Chee CBE, Wang YT, Yuan JM, Koh WP (2017) Dietary Intake of Antioxidant Vitamins and Carotenoids and Risk of Developing Active Tuberculosis in a Prospective Population-Based Cohort Study. Am J Epidemiol 186(4):491–500. doi: 3831256 [pii]10.1093/aje/kwx132

    Google Scholar 

  • Sorice A, Guerriero E, Capone F, Colonna G, Castello G, Costantini S (2014) Ascorbic acid: its role in immune system and chronic inflammation diseases. Mini Rev Med Chem 14(5):444–452. doi: MRMC-EPUB-60293 [pii]

    Google Scholar 

  • Sritharan M (2016) Iron Homeostasis in Mycobacterium tuberculosis: Mechanistic Insights into Siderophore-Mediated Iron Uptake. J Bacteriol 198(18):2399–2409. doi: JB.00359-16 [pii]10.1128/JB.00359-16

    Google Scholar 

  • Steinchen W, Schuhmacher JS, Altegoer F, Fage CD, Srinivasan V, Linne U, Marahiel MA, Bange G (2015) Catalytic mechanism and allosteric regulation of an oligomeric (p)ppGpp synthetase by an alarmone. Proc Natl Acad Sci U S A 112(43):13348–13353. doi: 1505271112 [pii]10.1073/pnas.1505271112

    Google Scholar 

  • Syal K, Chatterji D (2015) Differential binding of ppGpp and pppGpp to E. coli RNA polymerase: photo-labeling and mass spectral studies. Genes Cells 20(12):1006–1016. https://doi.org/10.1111/gtc.12304

    Article  CAS  PubMed  Google Scholar 

  • Syal K, Chakraborty S, Bhattacharyya R, Banerjee D (2015a) Combined inhalation and oral supplementation of Vitamin A and Vitamin D: a possible prevention and therapy for tuberculosis. Med Hypotheses 84(3):199–203. doi: S0306-9877(15)00005-5 [pii]10.1016/j.mehy.2014.12.022

    Google Scholar 

  • Syal K, Joshi H, Chatterji D, Jain V (2015b) Novel pppGpp binding site at the C-terminal region of the Rel enzyme from Mycobacterium smegmatis. FEBS J 282(19):3773–3785. https://doi.org/10.1111/febs.13373

    Article  CAS  PubMed  Google Scholar 

  • Syal K, Maiti K, Naresh K, Chatterji D, Jayaraman N (2015c) Synthetic glycolipids and (p)ppGpp analogs: development of inhibitors for mycobacterial growth, biofilm and stringent response. Adv Exp Med Biol 842:309–327. https://doi.org/10.1007/978-3-319-11280-0_20

    Article  CAS  PubMed  Google Scholar 

  • Syal K, Maiti K, Naresh K, Avaji PG, Chatterji D, Jayaraman N (2016) Synthetic arabinomannan glycolipids impede mycobacterial growth, sliding motility and biofilm structure. Glycoconj J 33(5):763–777. doi: 10.1007/s10719-016-9670-610.1007/s10719-016-9670-6 [pii]

    Google Scholar 

  • Syal K, Bhardwaj N, Chatterji D (2017a) Vitamin C targets (p)ppGpp synthesis leading to stalling of long-term survival and biofilm formation in Mycobacterium smegmatis. FEMS Microbiol Lett 364(1). doi: fnw282 [pii]10.1093/femsle/fnw282

    Google Scholar 

  • Syal K, Flentie K, Bhardwaj N, Maiti K, Jayaraman N, Stallings CL, Chatterji D (2017b) Synthetic (p)ppGpp Analogue Is an Inhibitor of Stringent Response in Mycobacteria. Antimicrob Agents Chemother 61(6). doi: AAC.00443-17 [pii]10.1128/AAC.00443-17

    Google Scholar 

  • Toulokhonov, II, Shulgina I, Hernandez VJ (2001) Binding of the transcription effector ppGpp to Escherichia coli RNA polymerase is allosteric, modular, and occurs near the N terminus of the beta′-subunit. J Biol Chem 276(2):1220–1225. doi:10.1074/jbc.M007184200M007184200 [pii]

    Google Scholar 

  • van der Biezen EA, Sun J, Coleman MJ, Bibb MJ, Jones JD (2000) Arabidopsis RelA/SpoT homologs implicate (p)ppGpp in plant signaling. Proc Natl Acad Sci U S A 97(7):3747–3752. doi:10.1073/pnas.060392397060392397 [pii]

    Google Scholar 

  • Verstraeten N, Knapen WJ, Kint CI, Liebens V, Van den Bergh B, Dewachter L, Michiels JE, Fu Q, David CC, Fierro AC, Marchal K, Beirlant J, Versees W, Hofkens J, Jansen M, Fauvart M, Michiels J (2015) Obg and Membrane Depolarization Are Part of a Microbial Bet-Hedging Strategy that Leads to Antibiotic Tolerance. Mol Cell 59(1):9–21. doi: S1097-2765(15)00347-0 [pii]10.1016/j.molcel.2015.05.011

    Google Scholar 

  • Vilcheze C, Hartman T, Weinrick B, Jacobs WR, Jr. (2013) Mycobacterium tuberculosis is extraordinarily sensitive to killing by a vitamin C-induced Fenton reaction. Nat Commun 4:1881. doi: ncomms2898 [pii]10.1038/ncomms2898

    Google Scholar 

  • Vrentas CE, Gaal T, Berkmen MB, Rutherford ST, Haugen SP, Vassylyev DG, Ross W, Gourse RL (2008) Still looking for the magic spot: the crystallographically defined binding site for ppGpp on RNA polymerase is unlikely to be responsible for rRNA transcription regulation. J Mol Biol 377(2):551–564. doi: S0022-2836(08)00075-2 [pii]10.1016/j.jmb.2008.01.042

    Google Scholar 

  • Wexselblatt E, Oppenheimer-Shaanan Y, Kaspy I, London N, Schueler-Furman O, Yavin E, Glaser G, Katzhendler J, Ben-Yehuda S (2012) Relacin, a novel antibacterial agent targeting the Stringent Response. PLoS Pathog 8(9):e1002925. doi: 10.1371/journal.ppat.1002925PPATHOGENS-D-12-00921 [pii]

    Google Scholar 

  • Weyer WJ, de Boer HA, de Boer JG, Gruber M (1976) The sequence of ppGpp and pppGpp in the reaction scheme for magic spot synthesis. Biochim Biophys Acta 442(1):123–127. doi: 0005-2787(76)90183-0 [pii]

    Google Scholar 

  • Williams SM, Chandran AV, Vijayabaskar MS, Roy S, Balaram H, Vishveshwara S, Vijayan M, Chatterji D (2014) A histidine aspartate ionic lock gates the iron passage in miniferritins from Mycobacterium smegmatis. J Biol Chem 289(16):11042–11058. doi:M113.524421 [pii]10.1074/jbc.M113.524421

    Google Scholar 

  • Zuo Y, Wang Y, Steitz TA (2013) The mechanism of E. coli RNA polymerase regulation by ppGpp is suggested by the structure of their complex. Mol Cell 50(3):430–436. doi: S1097-2765(13)00248-7 [pii]10.1016/j.molcel.2013.03.020

    Google Scholar 

Download references

Acknowledgement

Authors acknowledge the Department of Science and Technology, Government of India, and Department of Biotechnology, Government of India, for funding the laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dipankar Chatterji .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Syal, K., Chatterji, D. (2018). Vitamin C: A Natural Inhibitor of Cell Wall Functions and Stress Response in Mycobacteria. In: Chattopadhyay, K., Basu, S. (eds) Biochemical and Biophysical Roles of Cell Surface Molecules. Advances in Experimental Medicine and Biology, vol 1112. Springer, Singapore. https://doi.org/10.1007/978-981-13-3065-0_22

Download citation

Publish with us

Policies and ethics