Skip to main content

Abiraterone and Ionizing Radiation Alter the Sphingolipid Homeostasis in Prostate Cancer Cells

  • Chapter
  • First Online:
Biochemical and Biophysical Roles of Cell Surface Molecules

Abstract

Prostate cancer (PC) is one of the most common leading causes of cancer-related death in men. Currently, the main therapeutic approaches available for PC are based on the androgen deprivation and on radiotherapy. However, despite these treatments being initially effective in cancer remission, several patients undergo recurrence, developing a most aggressive and resistant PC.

Emerging evidence showed that abiraterone acetate drug will reduce PC recurrence by a mechanism independent of the inhibition of Cytochrome P450 17α-hydroxylase/17,20-lyase. Here we describe the involvement in the abiraterone-mediated PC cell death of a particular class of bioactive lipids called sphingolipids (SL). Sphingolipids are components of plasma membrane (PM) that organize macromolecular complexes involved in the control of several signaling pathways including the tumor cell death induced by radiotherapy. Here, we show for the first time that both in androgen-sensitive and insensitive PC cells abiraterone and ionizing radiation induce a reorganization of the plasma membrane SL composition. This event is triggered by activation of the PM-associated glycohydrolases that induce the production of cytotoxic ceramide by the in situ hydrolyses of glycosphingolipids. Taken together our data open a new scenario on the SL involvement in the therapy of PC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson J (2003) The role of antiandrogen monotherapy in the treatment of prostate cancer. BJU Int 91(5):455–461

    Article  CAS  Google Scholar 

  • Aureli M, Masilamani AP, Illuzzi G, Loberto N, Scandroglio F, Prinetti A, Chigorno V, Sonnino S (2009) Activity of plasma membrane beta-galactosidase and beta-glucosidase. FEBS Lett 583(15):2469–2473

    Article  CAS  Google Scholar 

  • Aureli M, Loberto N, Lanteri P, Chigorno V, Prinetti A, Sonnino S (2011) Cell surface sphingolipid glycohydrolases in neuronal differentiation and aging in culture. J Neurochem 116(5):891–899

    Article  CAS  Google Scholar 

  • Aureli M, Bassi R, Loberto N, Regis S, Prinetti A, Chigorno V, Aerts JM, Boot RG, Filocamo M, Sonnino S (2012a) Cell surface associated glycohydrolases in normal and Gaucher disease fibroblasts. J Inherit Metab Dis 35(6):1081–1091

    Article  CAS  Google Scholar 

  • Aureli M, Bassi R, Prinetti A, Chiricozzi E, Pappalardi B, Chigorno V, Di Muzio N, Loberto N, Sonnino S (2012b) Ionizing radiations increase the activity of the cell surface glycohydrolases and the plasma membrane ceramide content. Glycoconj J 29:585

    Article  CAS  Google Scholar 

  • Aureli M, Murdica V, Loberto N, Samarani M, Prinetti A, Bassi R, Sonnino S (2014) Exploring the link between ceramide and ionizing radiation. Glycoconj J 31(6–7):449–459

    Article  CAS  Google Scholar 

  • Bruno RD, Gover TD, Burger AM, Brodie AM, Njar VC (2008) 17alpha-Hydroxylase/17,20 lyase inhibitor VN/124-1 inhibits growth of androgen-independent prostate cancer cells via induction of the endoplasmic reticulum stress response. Mol Cancer Ther 7(9):2828–2836

    Article  CAS  Google Scholar 

  • Chung JY, Cho JY, Yu KS, Kim JR, Lim KS, Sohn DR, Shin SG, Jang IJ (2008) Pharmacokinetic and pharmacodynamic interaction of lorazepam and valproic acid in relation to UGT2B7 genetic polymorphism in healthy subjects. Clin Pharmacol Ther 83(4):595–600

    Article  CAS  Google Scholar 

  • Grossebrummel H, Peter T, Mandelkow R, Weiss M, Muzzio D, Zimmermann U, Walther R, Jensen F, Knabbe C, Zygmunt M, Burchardt M, Stope MB (2016) Cytochrome P450 17A1 inhibitor abiraterone attenuates cellular growth of prostate cancer cells independently from androgen receptor signaling by modulation of oncogenic and apoptotic pathways. Int J Oncol 48(2):793–800

    Article  CAS  Google Scholar 

  • Hajj C, Haimovitz-Friedman A (2013) Sphingolipids’ role in radiotherapy for prostate cancer. Handb Exp Pharmacol 216:115–130

    Article  CAS  Google Scholar 

  • Hakomori S (1990) Bifunctional role of glycosphingolipids. Modulators for transmembrane signaling and mediators for cellular interactions. J Biol Chem 265(31):18713–18716

    CAS  PubMed  Google Scholar 

  • Huang C, Freter C (2015) Lipid metabolism, apoptosis and cancer therapy. Int J Mol Sci 16(1):924–949

    Article  CAS  Google Scholar 

  • Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61(2):69–90

    Article  Google Scholar 

  • Kabayama K, Sato T, Saito K, Loberto N, Prinetti A, Sonnino S, Kinjo M, Igarashi Y, Inokuchi J (2007) Dissociation of the insulin receptor and caveolin-1 complex by ganglioside GM3 in the state of insulin resistance. Proc Natl Acad Sci U S A 104(34):13678–13683

    Article  CAS  Google Scholar 

  • Kaiser HJ, Lingwood D, Levental I, Sampaio JL, Kalvodova L, Rajendran L, Simons K (2009) Order of lipid phases in model and plasma membranes. Proc Natl Acad Sci U S A 106(39):16645–16650

    Article  CAS  Google Scholar 

  • Kolesnick R (1992) Ceramide: a novel second messenger. Trends Cell Biol 2(8):232–236

    Article  CAS  Google Scholar 

  • Kolesnick R, Fuks Z (2003) Radiation and ceramide-induced apoptosis. Oncogene 22(37):5897–5906

    Article  CAS  Google Scholar 

  • Kolesnick R, Golde DW (1994) The sphingomyelin pathway in tumor necrosis factor and interleukin-1 signaling. Cell 77(3):325–328

    Article  CAS  Google Scholar 

  • Kolvenbag GJ, Iversen P, Newling DW (2001) Antiandrogen monotherapy: a new form of treatment for patients with prostate cancer. Urology 58(2 Suppl 1):16–23

    Article  CAS  Google Scholar 

  • Merrill AH Jr (2011) Sphingolipid and glycosphingolipid metabolic pathways in the era of sphingolipidomics. Chem Rev 111(10):6387–6422

    Article  CAS  Google Scholar 

  • Navone NM, Logothetis CJ, von Eschenbach AC, Troncoso P (1998) Model systems of prostate cancer: uses and limitations. Cancer Metastasis Rev 17(4):361–371

    Article  Google Scholar 

  • Prinetti A, Loberto N, Chigorno V, Sonnino S (2009) Glycosphingolipid behaviour in complex membranes. Biochim Biophys Acta 1788(1):184–193

    Article  CAS  Google Scholar 

  • Prinetti A, Cao T, Illuzzi G, Prioni S, Aureli M, Gagliano N, Tredici G, Rodriguez-Menendez V, Chigorno V, Sonnino S (2011) A glycosphingolipid/caveolin-1 signaling complex inhibits motility of human ovarian carcinoma cells. J Biol Chem 286(47):40900–40910

    Article  CAS  Google Scholar 

  • Simons K, Sampaio JL (2011) Membrane organization and lipid rafts. Cold Spring Harb Perspect Biol 3(10):a004697

    Article  Google Scholar 

  • Sonnino S, Prinetti A, Mauri L, Chigorno V, Tettamanti G (2006) Dynamic and structural properties of sphingolipids as driving forces for the formation of membrane domains. Chem Rev 106(6):2111–2125

    Article  CAS  Google Scholar 

  • Sonnino S, Aureli M, Loberto N, Chigorno V, Prinetti A (2010) Fine tuning of cell functions through remodeling of glycosphingolipids by plasma membrane-associated glycohydrolases. FEBS Lett 584(9):1914–1922

    Article  CAS  Google Scholar 

  • Sonnino S, Aureli M, Mauri L, Ciampa MG, Prinetti A (2015) Membrane lipid domains in the nervous system. Front Biosci 20:280–302

    Article  CAS  Google Scholar 

  • Teichgraber V, Ulrich M, Endlich N, Riethmuller J, Wilker B, De Oliveira-Munding CC, van Heeckeren AM, Barr ML, von Kurthy G, Schmid KW, Weller M, Tummler B, Lang F, Grassme H, Doring G, Gulbins E (2008) Ceramide accumulation mediates inflammation, cell death and infection susceptibility in cystic fibrosis. Nat Med 14(4):382–391

    Article  Google Scholar 

  • Valaperta R, Chigorno V, Basso L, Prinetti A, Bresciani R, Preti A, Miyagi T, Sonnino S (2006) Plasma membrane production of ceramide from ganglioside GM3 in human fibroblasts. FASEB J 20(8):1227–1229

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandro Sonnino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Murdica, V. et al. (2018). Abiraterone and Ionizing Radiation Alter the Sphingolipid Homeostasis in Prostate Cancer Cells. In: Chattopadhyay, K., Basu, S. (eds) Biochemical and Biophysical Roles of Cell Surface Molecules. Advances in Experimental Medicine and Biology, vol 1112. Springer, Singapore. https://doi.org/10.1007/978-981-13-3065-0_20

Download citation

Publish with us

Policies and ethics