Skip to main content

Multiple Roles, Multiple Adaptors: Dynein During Cell Cycle

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1112))

Abstract

Dynein is an essential protein complex present in most eukaryotes that regulate biological processes ranging from ciliary beating, intracellular transport, to cell division. Elucidating the detailed mechanism of dynein function has been a challenging task owing to its large molecular weight and high complexity of the motor. With the advent of technologies in the last two decades, studies have uncovered a wealth of information about the structural, biochemical, and cell biological roles of this motor protein. Cytoplasmic dynein associates with dynactin through adaptor proteins to mediate retrograde transport of vesicles, mRNA, proteins, and organelles on the microtubule tracts. In a mitotic cell, dynein has multiple localizations, such as at the nuclear envelope, kinetochores, mitotic spindle and spindle poles, and cell cortex. In line with this, dynein regulates multiple events during the cell cycle, such as centrosome separation, nuclear envelope breakdown, spindle assembly checkpoint inactivation, chromosome segregation, and spindle positioning. Here, we provide an overview of dynein structure and function with focus on the roles played by this motor during different stages of the cell cycle. Further, we review in detail the role of dynactin and dynein adaptors that regulate both recruitment and activity of dynein during the cell cycle.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aridor M, Hannan LA (2000) Traffic jam: a compendium of human diseases that affect intracellular transport processes. Traffic 1:836–851

    Article  CAS  PubMed  Google Scholar 

  • Aridor M, Hannan LA (2002) Traffic jams II: an update of diseases of intracellular transport. Traffic 3:781–790

    Article  CAS  PubMed  Google Scholar 

  • Aumais JP, Williams SN, Luo W, Nishino M, Caldwell KA, Caldwell GA, Lin S-H, Yu-Lee L-Y (2003) Role for NudC, a dynein-associated nuclear movement protein, in mitosis and cytokinesis. J Cell Sci 116:1991

    Article  CAS  PubMed  Google Scholar 

  • Barisic M, Geley S (2011) Spindly switch controls anaphase: spindly and RZZ functions in chromosome attachment and mitotic checkpoint control. Cell Cycle 10:449–456

    Article  CAS  PubMed  Google Scholar 

  • Barisic M, Sohm B, Mikolcevic P, Wandke C, Rauch V, Ringer T, Hess M, Bonn G, Geley S (2010) Spindly/CCDC99 is required for efficient chromosome Congression and mitotic checkpoint regulation. Mol Biol Cell 21:1968–1981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Basto R, Scaerou F, Mische S, Wojcik E, Lefebvre C, Gomes R, Hays T, Karess R (2004) In vivo dynamics of the rough deal checkpoint protein during Drosophila mitosis. Curr Biol 14:56–61

    Article  CAS  PubMed  Google Scholar 

  • Beaudouin J, Gerlich D, Daigle N, Eils R, Ellenberg J (2002) Nuclear envelope breakdown proceeds by microtubule-induced tearing of the lamina. Cell 108:83–96

    Article  CAS  PubMed  Google Scholar 

  • Belyy V, Schlager MA, Foster H, Reimer AE, Carter AP, Yildiz A (2016) The mammalian dynein–dynactin complex is a strong opponent to kinesin in a tug-of-war competition. Nat Cell Biol 18:1018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhabha G, Cheng HC, Zhang N, Moeller A, Liao M, Speir JA, Cheng Y, Vale RD (2014) Allosteric communication in the dynein motor domain. Cell 159:857–868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bi W, Sapir T, Shchelochkov OA, Zhang F, Withers MA, Hunter JV, Levy T, Shinder V, Peiffer DA, Gunderson KL et al (2009) Increased LIS1 expression affects human and mouse brain development. Nat Genet 41:168–177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bielska E, Schuster M, Roger Y, Berepiki A, Soanes DM, Talbot NJ, Steinberg G (2014) Hook is an adapter that coordinates kinesin-3 and dynein cargo attachment on early endosomes. J Cell Biol 204:989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolhy S, Bouhlel I, Dultz E, Nayak T, Zuccolo M, Gatti X, Vallee R, Ellenberg J, Doye V (2011) A Nup133-dependent NPC-anchored network tethers centrosomes to the nuclear envelope in prophase. J Cell Biol 192:855–871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bosveld F, Ainslie A, Bellaïche Y (2017) Sequential activities of dynein, mud and asp in centrosome–spindle coupling maintain centrosome number upon mitosis. J Cell Sci 130:3557

    Article  CAS  PubMed  Google Scholar 

  • Bradshaw Nicholas J, Hennah W, Soares Dinesh C (2013) NDE1 and NDEL1: twin neurodevelopmental proteins with similar ‘nature’ but different ‘nurture’. In: BioMolecular concepts, p 447

    Google Scholar 

  • Buffin E, Lefebvre C, Huang J, Gagou ME, Karess RE (2005) Recruitment of Mad2 to the kinetochore requires the Rod/Zw10 complex. Curr Biol 15:856–861

    Article  CAS  PubMed  Google Scholar 

  • Burton P, Adams DR, Abraham A, Allcock RW, Jiang Z, McCahill A, Gilmour J, McAbney J, Kaupisch A, Kane NM et al (2010) Erythro-9-(2-hydroxy-3-nonyl)adenine (EHNA) blocks differentiation and maintains the expression of pluripotency markers in human embryonic stem cells. Biochem J 432:575

    Article  CAS  PubMed  Google Scholar 

  • Busson S, Dujardin D, Moreau A, Dompierre J, De Mey JR (1998) Dynein and dynactin are localized to astral microtubules and at cortical sites in mitotic epithelial cells. Curr Biol 8:541–544

    Article  CAS  PubMed  Google Scholar 

  • Campbell KS, Cooper S, Dessing M, Yates S, Buder A (1998) Interaction of p59fyn kinase with the dynein light chain, Tctex-1, and colocalization during cytokinesis. J Immunol 161:1728–1737

    CAS  PubMed  Google Scholar 

  • Carter AP, Garbarino JE, Wilson-Kubalek EM, Shipley WE, Cho C, Milligan RA, Vale RD, Gibbons IR (2008) Structure and functional role of Dynein’s microtubule-binding domain. Science 322:1691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carter AP, Cho C, Jin L, Vale RD (2011) Crystal structure of the dynein motor domain. Science 331:1159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan YW, Fava LL, Uldschmid A, Schmitz MHA, Gerlich DW, Nigg EA, Santamaria A (2009) Mitotic control of kinetochore-associated dynein and spindle orientation by human spindly. J Cell Biol 185:859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho C, Reck-Peterson SL, Vale RD (2008) Regulatory ATPase sites of cytoplasmic dynein affect processivity and force generation. J Biol Chem 283:25839–25845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chowdhury S, Ketcham SA, Schroer TA, Lander GC (2015) Structural organization of the dynein–dynactin complex bound to microtubules. Nat Struct Mol Biol 22:345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clemente GD, Hannaford MR, Januschke J, Griffis ER, Muller H-AJ (2017) Requirement of the dynein-adaptor spindly for mitotic and post-mitotic functions in drosophila. J Dev Biol 2018 Mar 30 6(2): pii: E9. https://doi.org/10.3390/jdb6020009

    Article  PubMed Central  Google Scholar 

  • Collins CA, Vallee RB (1989) Preparation of microtubules from rat liver and testis: cytoplasmic dynein is a major microtubule associated protein. Cell Motil Cytoskeleton 14:491–500

    Article  CAS  PubMed  Google Scholar 

  • Compton DA, Szilak I, Cleveland DW (1992) Primary structure of NuMA, an intranuclear protein that defines a novel pathway for segregation of proteins at mitosis. J Cell Biol 116:1395–1408

    Article  CAS  PubMed  Google Scholar 

  • Cowles MW, Hubert A, Zayas RM (2012) A Lissencephaly-1 homologue is essential for mitotic progression in the planarian Schmidtea mediterranea. Dev Dyn 241:901–910

    Article  CAS  PubMed  Google Scholar 

  • De Simone A, Gonczy P (2017) Computer simulations reveal mechanisms that organize nuclear dynein forces to separate centrosomes. Mol Biol Cell 28:3165–3170

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De Simone A, Nedelec F, Gonczy P (2016) Dynein transmits polarized Actomyosin cortical flows to promote centrosome separation. Cell Rep 14:2250–2262

    Article  PubMed  CAS  Google Scholar 

  • Delcros J-G, Prigent C, Giet R (2006) Dynactin targets Pavarotti-KLP to the central spindle during anaphase and facilitates cytokinesis in Drosophila S2 cells. J Cell Sci 119:4431

    Article  CAS  PubMed  Google Scholar 

  • DeSantis ME, Cianfrocco MA, Htet ZM, Tran PT, Reck-Peterson SL, Leschziner AE (2017) Lis1 has two opposing modes of regulating cytoplasmic dynein. Cell 170:1197–1208. e1112

    Google Scholar 

  • DeWitt MA, Chang AY, Combs PA, Yildiz A (2012) Cytoplasmic dynein moves through uncoordinated stepping of the AAA+ ring domains. Science 335:221

    Article  CAS  PubMed  Google Scholar 

  • DeWitt MA, Cypranowska CA, Cleary FB, Belyy V, Yildiz A (2014) The AAA3 domain of cytoplasmic dynein acts as a switch to facilitate microtubule release. Nat Struct Mol Biol 22:73

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Egan MJ, Tan K, Reck-Peterson SL (2012) Lis1 is an initiation factor for dynein-driven organelle transport. J Cell Biol 197:971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farrer MJ, Hulihan MM, Kachergus JM, Dachsel JC, Stoessl AJ, Grantier LL, Calne S, Calne DB, Lechevalier B, Chapon F et al (2009) DCTN1 mutations in Perry syndrome. Nat Genet 41:163–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faulkner NE, Dujardin DL, Tai C-Y, Vaughan KT, O’Connell CB, Wang YL, Vallee RB (2000) A role for the lissencephaly gene LIS1 in mitosis and cytoplasmic dynein function. Nat Cell Biol 2:784

    Article  CAS  PubMed  Google Scholar 

  • Ferenz NP, Paul R, Fagerstrom C, Mogilner A, Wadsworth P (2009) Dynein antagonizes eg5 by crosslinking and sliding antiparallel microtubules. Curr Biol 19:1833–1838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Firestone AJ, Weinger JS, Maldonado M, Barlan K, Langston LD, O’Donnell M, Gelfand VI, Kapoor TM, Chen JK (2012) Small-molecule inhibitors of the AAA+ ATPase motor cytoplasmic dynein. Nature 484:125–129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu MM, Holzbaur EL (2014) Integrated regulation of motor-driven organelle transport by scaffolding proteins. Trends Cell Biol 24:564–574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gallini S, Carminati M, De Mattia F, Pirovano L, Martini E, Oldani A, Asteriti IA, Guarguaglini G, Mapelli M (2016) NuMA phosphorylation by Aurora-A Orchestrates spindle orientation. Curr Biol 26:458–469

    Article  CAS  PubMed  Google Scholar 

  • Gama JB, Pereira C, Simões PA, Celestino R, Reis RM, Barbosa DJ, Pires HR, Carvalho C, Amorim J, Carvalho AX et al (2017) Molecular mechanism of dynein recruitment to kinetochores by the Rod–Zw10–Zwilch complex and spindly. J Cell Biol 216:943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gassmann R, Essex A, Hu J-S, Maddox PS, Motegi F, Sugimoto A, O’Rourke SM, Bowerman B, McLeod I, Yates JR et al (2008) A new mechanism controlling kinetochore–microtubule interactions revealed by comparison of two dynein-targeting components: SPDL-1 and the Rod/Zwilch/Zw10 complex. Genes Dev 22:2385–2399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gassmann R, Holland AJ, Varma D, Wan X, Çivril F, Cleveland DW, Oegema K, Salmon ED, Desai A (2010) Removal of spindly from microtubule-attached kinetochores controls spindle checkpoint silencing in human cells. Genes Dev 24:957–971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gee MA, Heuser JE, Vallee RB (1997) An extended microtubule-binding structure within the dynein motor domain. Nature 390:636–639

    Article  CAS  PubMed  Google Scholar 

  • Gibbons IR, Rowe AJ (1965) Dynein: a protein with adenosine Triphosphatase activity from cilia. Science 149:424

    Article  CAS  PubMed  Google Scholar 

  • Gibbons IR, Garbarino JE, Tan CE, Reck-Peterson SL, Vale RD, Carter AP (2005) The affinity of the dynein microtubule-binding domain is modulated by the conformation of its coiled-coil stalk. J Biol Chem 280:23960–23965

    Article  CAS  PubMed  Google Scholar 

  • Gill SR, Schroer TA, Szilak I, Steuer ER, Sheetz MP, Cleveland DW (1991) Dynactin, a conserved, ubiquitously expressed component of an activator of vesicle motility mediated by cytoplasmic dynein. J Cell Biol 115:1639–1650

    Article  CAS  PubMed  Google Scholar 

  • Gonczy P (2008) Mechanisms of asymmetric cell division: flies and worms pave the way. Nat Rev Mol Cell Biol 9:355–366

    Article  PubMed  CAS  Google Scholar 

  • Gonczy P, Pichler S, Kirkham M, Hyman AA (1999) Cytoplasmic dynein is required for distinct aspects of MTOC positioning, including centrosome separation, in the one cell stage Caenorhabditis elegans embryo. J Cell Biol 147:135–150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goshima G, Nedelec F, Vale RD (2005) Mechanisms for focusing mitotic spindle poles by minus end-directed motor proteins. J Cell Biol 171:229–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Griffis ER, Stuurman N, Vale RD (2007) Spindly, a novel protein essential for silencing the spindle assembly checkpoint, recruits dynein to the kinetochore. J Cell Biol 177:1005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grotjahn DA, Chowdhury S, Xu Y, McKenney RJ, Schroer TA, Lander GC (2018) Cryo-electron tomography reveals that dynactin recruits a team of dyneins for processive motility. Nat Struct Mol Biol 25:203–207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gueth-Hallonet C, Weber K, Osborn M (1996) NuMA: a bipartite nuclear location signal and other functional properties of the tail domain. Exp Cell Res 225:207–218

    Article  CAS  PubMed  Google Scholar 

  • Harborth J, Wang J, Gueth-Hallonet C, Weber K, Osborn M (1999) Self assembly of NuMA: multiarm oligomers as structural units of a nuclear lattice. EMBO J 18:1689–1700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haren L, Merdes A (2002) Direct binding of NuMA to tubulin is mediated by a novel sequence motif in the tail domain that bundles and stabilizes microtubules. J Cell Sci 115:1815–1824

    CAS  PubMed  Google Scholar 

  • Hoing S, Yeh TY, Baumann M, Martinez NE, Habenberger P, Kremer L, Drexler HCA, Kuchler P, Reinhardt P, Choidas A et al (2018) Dynarrestin, a novel inhibitor of cytoplasmic dynein. Cell Chem Biol 25(4):357–369

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Holland AJ, Reis RM, Niessen S, Pereira C, Andres DA, Spielmann HP, Cleveland DW, Desai A, Gassmann R (2015) Preventing farnesylation of the dynein adaptor spindly contributes to the mitotic defects caused by farnesyltransferase inhibitors. Mol Biol Cell 26:1845–1856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang J, Roberts AJ, Leschziner AE, Reck-Peterson SL (2012) Lis1 acts as a “clutch” between the ATPase and microtubule-binding domains of the dynein motor. Cell 150:975–986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hueschen CL, Kenny SJ, Xu K, Dumont S (2017) NuMA recruits dynein activity to microtubule minus-ends at mitosis. elife 2017 Nov 29 6. pii: e29328. https://doi.org/10.7554/eLife.29328

  • Imai H, Narita A, Maeda Y, Schroer TA (2014) Dynactin 3D structure: implications for assembly and dynein binding. J Mol Biol 426:3262–3271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jamison DK, Driver JW, Rogers AR, Constantinou PE, Diehl MR (2010) Two kinesins transport cargo primarily via the action of one motor: implications for intracellular transport. Biophys J 99:2967–2977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jamison DK, Driver JW, Diehl MR (2012) Cooperative responses of multiple kinesins to variable and constant loads. J Biol Chem 287:3357–3365

    Article  CAS  PubMed  Google Scholar 

  • Jin M, Pomp O, Shinoda T, Toba S, Torisawa T, Furuta Ky, Oiwa K, Yasunaga T, Kitagawa D, Matsumura S et al (2017) Katanin p80, NuMA and cytoplasmic dynein cooperate to control microtubule dynamics. Sci Rep 7:39902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kallajoki M, Harborth J, Weber K, Osborn M (1993) Microinjection of a monoclonal antibody against SPN antigen, now identified by peptide sequences as the NuMA protein, induces micronuclei in PtK2 cells. J Cell Sci 104(Pt 1):139–150

    CAS  PubMed  Google Scholar 

  • Kaplan A, Reiner O (2011) Linking cytoplasmic dynein and transport of Rab8 vesicles to the midbody during cytokinesis by the doublecortin domain-containing 5 protein. J Cell Sci 124:3989

    Article  CAS  PubMed  Google Scholar 

  • Kardon JR, Vale RD (2009) Regulators of the cytoplasmic dynein motor. Nat Rev Mol Cell Biol 10:854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karess R (2005) Rod-Zw10-Zwilch: a key player in the spindle checkpoint. Trends Cell Biol 15:386–392

    Article  CAS  PubMed  Google Scholar 

  • Karki S, Holzbaur EL (1995) Affinity chromatography demonstrates a direct binding between cytoplasmic dynein and the dynactin complex. J Biol Chem 270:28806–28811

    Article  CAS  PubMed  Google Scholar 

  • Karki S, LaMonte B, Holzbaur EL (1998) Characterization of the p22 subunit of dynactin reveals the localization of cytoplasmic dynein and dynactin to the midbody of dividing cells. J Cell Biol 142:1023–1034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kashina AS, Baskin RJ, Cole DG, Wedaman KP, Saxton WM, Scholey JM (1996) A bipolar kinesin. Nature 379:270–272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kon T, Nishiura M, Ohkura R, Toyoshima YY, Sutoh K (2004) Distinct functions of nucleotide-binding/hydrolysis sites in the four AAA modules of cytoplasmic dynein. Biochemistry 43:11266–11274

    Article  CAS  PubMed  Google Scholar 

  • Kon T, Imamula K, Roberts AJ, Ohkura R, Knight PJ, Gibbons IR, Burgess SA, Sutoh K (2009) Helix sliding in the stalk coiled coil of dynein couples ATPase and microtubule binding. Nat Struct Mol Biol 16:325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kon T, Oyama T, Shimo-Kon R, Imamula K, Shima T, Sutoh K, Kurisu G (2012) The 2.8 Å crystal structure of the dynein motor domain. Nature 484:345

    Article  CAS  PubMed  Google Scholar 

  • Kops GJ, Kim Y, Weaver BA, Mao Y, McLeod I, Yates JR 3rd, Tagaya M, Cleveland DW (2005) ZW10 links mitotic checkpoint signaling to the structural kinetochore. J Cell Biol 169:49–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kotak S, Gonczy P (2013) Mechanisms of spindle positioning: cortical force generators in the limelight. Curr Opin Cell Biol 25:741–748

    Article  CAS  PubMed  Google Scholar 

  • Kotak S, Busso C, Gönczy P (2012) Cortical dynein is critical for proper spindle positioning in human cells. J Cell Biol 199:97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kotak S, Busso C, Gönczy P (2013) NuMA phosphorylation by CDK1 couples mitotic progression with cortical dynein function. EMBO J 32:2517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kotak S, Busso C, Gönczy P (2014) NuMA interacts with phosphoinositides and links the mitotic spindle with the plasma membrane. EMBO J 33:1815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kotak S, Afshar K, Busso C, Gonczy P (2016) Aurora A kinase regulates proper spindle positioning in C. elegans and in human cells. J Cell Sci 129:3015–3025

    Article  CAS  PubMed  Google Scholar 

  • Lee IG, Olenick MA, Boczkowska M, Franzini-Armstrong C, Holzbaur ELF, Dominguez R (2018) A conserved interaction of the dynein light intermediate chain with dynein-dynactin effectors necessary for processivity. Nat Commun 9:986

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lenz JH, Schuchardt I, Straube A, Steinberg G (2006) A dynein loading zone for retrograde endosome motility at microtubule plus-ends. EMBO J 25:2275–2286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin C-C, Cheng T-S, Hsu C-M, Wu C-H, Chang L-S, Shen Z-S, Yeh H-M, Chang L-K, Howng S-L, Hong Y-R (2006) Characterization and functional aspects of human Ninein isoforms that regulated by Centrosomal targeting signals and evidence for docking sites to direct gamma-tubulin. Cell Cycle 5:2517–2527

    Article  CAS  PubMed  Google Scholar 

  • Lipka J, Kuijpers M, Jaworski J, Hoogenraad CC (2013) Mutations in cytoplasmic dynein and its regulators cause malformations of cortical development and neurodegenerative diseases. Biochem Soc Trans 41:1605–1612

    Article  CAS  PubMed  Google Scholar 

  • Lockrow JP, Holden KR, Dwivedi A, Matheus MG, Lyons MJ (2011) LIS1 duplication: expanding the phenotype. J Child Neurol 27:791–795

    Article  PubMed  Google Scholar 

  • Luderus ME, den Blaauwen JL, de Smit OJ, Compton DA, van Driel R (1994) Binding of matrix attachment regions to Lamin polymers involves single-stranded regions and the minor groove. Mol Cell Biol 14:6297–6305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lydersen BK, Pettijohn DE (1980) Human-specific nuclear protein that associates with the polar region of the mitotic apparatus: distribution in a human/hamster hybrid cell. Cell 22:489–499

    Article  CAS  PubMed  Google Scholar 

  • Maiato H, Rieder CL, Khodjakov A (2004) Kinetochore-driven formation of kinetochore fibers contributes to spindle assembly during animal mitosis. J Cell Biol 167:831–840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mallik R, Carter BC, Lex SA, King SJ, Gross SP (2004) Cytoplasmic dynein functions as a gear in response to load. Nature 427:649–652

    Article  CAS  PubMed  Google Scholar 

  • McKenney RJ, Vershinin M, Kunwar A, Vallee RB, Gross SP (2010) LIS1 and NudE induce a persistent dynein force-producing state. Cell 141:304–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McKenney RJ, Weil SJ, Scherer J, Vallee RB (2011) Mutually exclusive cytoplasmic dynein regulation by NudE-Lis1 and dynactin. J Biol Chem 286:39615–39622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McKenney RJ, Huynh W, Tanenbaum ME, Bhabha G, Vale RD (2014) Activation of cytoplasmic dynein motility by dynactin-cargo adapter complexes. Science 345:337–341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merdes A, Ramyar K, Vechio JD, Cleveland DW (1996) A complex of NuMA and cytoplasmic dynein is essential for mitotic spindle assembly. Cell 87:447–458

    Article  CAS  PubMed  Google Scholar 

  • Moon HM, Youn YH, Pemble H, Yingling J, Wittmann T, Wynshaw-Boris A (2014) LIS1 controls mitosis and mitotic spindle organization via the LIS1–NDEL1–dynein complex. Hum Mol Genet 23:449–466

    Article  CAS  PubMed  Google Scholar 

  • Morales-Mulia S, Scholey JM (2005) Spindle pole organization in Drosophila S2 cells by dynein, abnormal spindle protein (Asp), and KLP10A. Mol Biol Cell 16:3176–3186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mosalaganti S, Keller J, Altenfeld A, Winzker M, Rombaut P, Saur M, Petrovic A, Wehenkel A, Wohlgemuth S, Müller F et al (2017) Structure of the RZZ complex and molecular basis of its interaction with spindly. J Cell Biol 216:961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moudgil DK, Chan GKT (2015) Lipids beyond membranes; farnesylation targets spindly to kinetochores. Cell Cycle 14:2185–2186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moudgil DK, Westcott N, Famulski JK, Patel K, Macdonald D, Hang H, Chan GKT (2015) A novel role of farnesylation in targeting a mitotic checkpoint protein, human spindly, to kinetochores. J Cell Biol 208:881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murdoch H, Vadrevu S, Prinz A, Dunlop AJ, Klussmann E, Bolger GB, Norman JC, Houslay MD (2011) Interaction between LIS1 and PDE4, and its role in cytoplasmic dynein function. J Cell Sci 124:2253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakajima Y, Kanno T, Nagaya T, Kuribayashi K, Nakano T, Gotoh A, Nishizaki T (2015) Adenosine deaminase inhibitor EHNA exhibits a potent anticancer effect against malignant pleural mesothelioma. Cell Physiol Biochem 35:51–60

    Article  CAS  PubMed  Google Scholar 

  • Neuwald AF, Aravind L, Spouge JL, Koonin EV (1999) AAA+: A class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes. Genome Res 9:27–43

    CAS  PubMed  Google Scholar 

  • Nguyen-Ngoc T, Afshar K, Gonczy P (2007) Coupling of cortical dynein and G alpha proteins mediates spindle positioning in Caenorhabditis elegans. Nat Cell Biol 9:1294–1302

    Article  CAS  PubMed  Google Scholar 

  • Nicholas MP, Hook P, Brenner S, Wynne CL, Vallee RB, Gennerich A (2015) Control of cytoplasmic dynein force production and processivity by its C-terminal domain. Nat Commun 6:6206

    Article  CAS  PubMed  Google Scholar 

  • Numata N, Shima T, Ohkura R, Kon T, Sutoh K (2011) C-sequence of the Dictyostelium cytoplasmic dynein participates in processivity modulation. FEBS Lett 585:1185–1190

    Article  CAS  PubMed  Google Scholar 

  • Nyarko A, Song Y, Barbar E (2012) Intrinsic disorder in dynein intermediate chain modulates its interactions with NudE and dynactin. J Biol Chem 287:24884–24893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olenick MA, Tokito M, Boczkowska M, Dominguez R, Holzbaur ELF (2016) Hook adaptors induce unidirectional processive motility by enhancing the dynein-dynactin interaction. J Biol Chem 2016 Aug 26 291(35): 18239–18251. https://doi.org/10.1074/jbc.M116.738211. Epub 2016 Jun 30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ou YY, Mack GJ, Zhang M, Rattner JB (2002) CEP110 and ninein are located in a specific domain of the centrosome associated with centrosome maturation. J Cell Sci 115:1825

    CAS  PubMed  Google Scholar 

  • Paschal BM, Vallee RB (1987) Retrograde transport by the microtubule-associated protein MAP 1C. Nature 330:181–183

    Article  CAS  PubMed  Google Scholar 

  • Paschal BM, Shpetner HS, Vallee RB (1987) MAP 1C is a microtubule-activated ATPase which translocates microtubules in vitro and has dynein-like properties. J Cell Biol 105:1273

    Article  CAS  PubMed  Google Scholar 

  • Penningroth SM, Cheung A, Bouchard P, Gagnon C, Bardin CW (1982) Dynein ATPase is inhibited selectively in vitro by erythro-9-[3-2-(hydroxynonyl)]adenine. Biochem Biophys Res Commun 104:234–240

    Article  CAS  PubMed  Google Scholar 

  • Petronczki M, Glotzer M, Kraut N, Peters J-M (2007) Polo-like kinase 1 triggers the initiation of cytokinesis in human cells by promoting recruitment of the RhoGEF Ect2 to the central spindle. Dev Cell 12:713–725

    Article  CAS  PubMed  Google Scholar 

  • Potapova T, Gorbsky GJ (2017) The consequences of chromosome segregation errors in mitosis and meiosis. Biology (Basel) 6

    Google Scholar 

  • Puls I, Jonnakuty C, LaMonte BH, Holzbaur EL, Tokito M, Mann E, Floeter MK, Bidus K, Drayna D, Oh SJ et al (2003) Mutant dynactin in motor neuron disease. Nat Genet 33:455–456

    Article  CAS  PubMed  Google Scholar 

  • Raaijmakers JA, van Heesbeen RG, Meaders JL, Geers EF, Fernandez-Garcia B, Medema RH, Tanenbaum ME (2012) Nuclear envelope-associated dynein drives prophase centrosome separation and enables Eg5-independent bipolar spindle formation. EMBO J 31:4179–4190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raaijmakers JA, Tanenbaum ME, Medema RH (2013) Systematic dissection of dynein regulators in mitosis. J Cell Biol 201:201–215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rai AK, Rai A, Ramaiya AJ, Jha R, Mallik R (2013) Molecular adaptations allow dynein to generate large collective forces inside cells. Cell 152:172–182

    Article  CAS  PubMed  Google Scholar 

  • Rank KC, Rayment I (2013) Functional asymmetry in kinesin and dynein dimers. Biol Cell 105:1–13

    Article  CAS  PubMed  Google Scholar 

  • Reboutier D, Troadec MB, Cremet JY, Chauvin L, Guen V, Salaun P, Prigent C (2013) Aurora A is involved in central spindle assembly through phosphorylation of Ser 19 in P150Glued. J Cell Biol 201:65–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reck-Peterson SL, Yildiz A, Carter AP, Gennerich A, Zhang N, Vale RD (2006) Single-molecule analysis of dynein processivity and stepping behavior. Cell 126:335–348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Redwine WB, Hernandez-Lopez R, Zou S, Huang J, Reck-Peterson SL, Leschziner AE (2012) Structural basis for microtubule binding and release by dynein. Science 337:1532–1536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Redwine WB, DeSantis ME, Hollyer I, Htet ZM, Tran PT, Swanson SK, Florens L, Washburn MP, Reck-Peterson SL (2017a) The human cytoplasmic dynein interactome reveals novel activators of motility. elife 6

    Google Scholar 

  • Redwine WB, DeSantis ME, Hollyer I, Htet ZM, Tran PT, Swanson SK, Florens L, Washburn MP, Reck-Peterson SL (2017b) The human cytoplasmic dynein interactome reveals novel activators of motility. elife 6:e28257

    Article  PubMed  PubMed Central  Google Scholar 

  • Reiner O, Carrozzo R, Shen Y, Wehnert M, Faustinella F, Dobyns WB, Caskey CT, Ledbetter DH (1993) Isolation of a Miller-Dicker lissencephaly gene containing G protein [beta]-subunit-like repeats. Nature 364:717–721

    Article  CAS  PubMed  Google Scholar 

  • Roberts AJ, Numata N, Walker ML, Kato YS, Malkova B, Kon T, Ohkura R, Arisaka F, Knight PJ, Sutoh K et al (2009) AAA+ Ring and linker swing mechanism in the dynein motor. Cell 136:485–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roberts AJ, Malkova B, Walker ML, Sakakibara H, Numata N, Kon T, Ohkura R, Edwards TA, Knight PJ, Sutoh K et al (2012) ATP-driven remodeling of the linker domain in the dynein motor. Structure 20:1670–1680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roberts AJ, Kon T, Knight PJ, Sutoh K, Burgess SA (2013) Functions and mechanics of dynein motor proteins. Nat Rev Mol Cell Biol 14:713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robinson JT, Wojcik EJ, Sanders MA, McGrail M, Hays TS (1999) Cytoplasmic dynein is required for the nuclear attachment and migration of centrosomes during mitosis in Drosophila. J Cell Biol 146:597–608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roossien D, Miller K, Gallo G (2015) Ciliobrevins as tools for studying dynein motor function. Front Cell Neurosci 9:252

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Salina D, Bodoor K, Eckley DM, Schroer TA, Rattner JB, Burke B (2002) Cytoplasmic dynein as a facilitator of nuclear envelope breakdown. Cell 108:97–107

    Article  CAS  PubMed  Google Scholar 

  • Saredi A, Howard L, Compton DA (1997) Phosphorylation regulates the assembly of NuMA in a mammalian mitotic extract. J Cell Sci 110(Pt 11):1287–1297

    CAS  PubMed  Google Scholar 

  • Sasaki S, Shionoya A, Ishida M, Gambello MJ, Yingling J, Wynshaw-Boris A, Hirotsune S (2000) A LIS1/NUDEL/cytoplasmic dynein heavy chain complex in the developing and adult nervous system. Neuron 28:681–696

    Article  CAS  PubMed  Google Scholar 

  • Schlager MA, Serra-Marques A, Grigoriev I, Gumy LF, Esteves da Silva M, Wulf PS, Akhmanova A, Hoogenraad CC (2014) Bicaudal d family adaptor proteins control the velocity of dynein-based movements. Cell Rep 8:1248–1256

    Article  CAS  PubMed  Google Scholar 

  • Schliwa M, Woehlke G (2003) Molecular motors. Nature 422:759–765

    Article  CAS  PubMed  Google Scholar 

  • Schliwa M, Ezzell RM, Euteneuer U (1984) erythro-9-[3-(2-Hydroxynonyl)]adenine is an effective inhibitor of cell motility and actin assembly. Proc Natl Acad Sci USA 81:6044–6048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt DJ, Rose DJ, Saxton WM, Strome S (2005) Functional analysis of cytoplasmic dynein heavy chain in Caenorhabditis elegans with fast-acting temperature-sensitive mutations. Mol Biol Cell 16:1200–1212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt H, Gleave ES, Carter AP (2012) Insights into dynein motor domain function from a 3.3-Å crystal structure. Nat Struct Mol Biol 19:492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt H, Zalyte R, Urnavicius L, Carter AP (2015) Structure of human cytoplasmic dynein-2 primed for its power stroke. Nature 518:435–438

    Article  CAS  PubMed  Google Scholar 

  • Schmidt R, Fielmich L-E, Grigoriev I, Katrukha EA, Akhmanova A, van den Heuvel S (2017) Two populations of cytoplasmic dynein contribute to spindle positioning in C. elegans embryos. J Cell Biol 216:2777

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schroeder CM, Vale RD (2016) Assembly and activation of dynein-dynactin by the cargo adaptor protein Hook3. J Cell Biol 214:309–318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schroer TA (2004) Dynactin. Annu Rev Cell Dev Biol 20:759–779

    Article  CAS  PubMed  Google Scholar 

  • Seldin L, Muroyama A, Lechler T (2016) NuMA-microtubule interactions are critical for spindle orientation and the morphogenesis of diverse epidermal structures. elife 5:e12504

    Article  PubMed  PubMed Central  Google Scholar 

  • Shao C-Y, Zhu J, Xie Y-J, Wang Z, Wang Y-N, Wang Y, Su L-D, Zhou L, Zhou T-H, Shen Y (2013) Distinct functions of nuclear distribution proteins LIS1, Ndel1 and NudCL in regulating axonal mitochondrial transport. Traffic 14:785–797

    Article  CAS  PubMed  Google Scholar 

  • Sharp DJ, Rogers GC, Scholey JM (2000a) Cytoplasmic dynein is required for poleward chromosome movement during mitosis in Drosophila embryos. Nat Cell Biol 2:922–930

    Article  CAS  PubMed  Google Scholar 

  • Sharp DJ, Rogers GC, Scholey JM (2000b) Microtubule motors in mitosis. Nature 407:41–47

    Article  CAS  PubMed  Google Scholar 

  • Siaw MF, Mitchell BS, Koller CA, Coleman MS, Hutton JJ (1980) ATP depletion as a consequence of adenosine deaminase inhibition in man. Proc Natl Acad Sci USA 77:6157–6161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silva PMA, Tavares ÁA, Bousbaa H (2015) Co-silencing of human Bub3 and dynein highlights an antagonistic relationship in regulating kinetochore–microtubule attachments. FEBS Lett 589:3588–3594

    Article  CAS  PubMed  Google Scholar 

  • Silva PMA, Ribeiro N, Lima RT, Andrade C, Diogo V, Teixeira J, Florindo C, Tavares Á, Vasconcelos MH, Bousbaa H (2017) Suppression of spindly delays mitotic exit and exacerbates cell death response of cancer cells treated with low doses of paclitaxel. Cancer Lett 394:33–42

    Article  CAS  PubMed  Google Scholar 

  • Smith DS, Niethammer M, Ayala R, Zhou Y, Gambello MJ, Wynshaw-Boris A, Tsai L-H (2000) Regulation of cytoplasmic dynein behaviour and microtubule organization by mammalian Lis1. Nat Cell Biol 2:767

    Article  CAS  PubMed  Google Scholar 

  • Sparks CA, Fey EG, Vidair CA, Doxsey SJ (1995) Phosphorylation of NUMA occurs during nuclear breakdown and not mitotic spindle assembly. J Cell Sci 108(Pt 11):3389–3396

    CAS  PubMed  Google Scholar 

  • Splinter D, Tanenbaum ME, Lindqvist A, Jaarsma D, Flotho A, Yu KL, Grigoriev I, Engelsma D, Haasdijk ED, Keijzer N et al (2010) Bicaudal D2, dynein, and Kinesin-1 associate with nuclear pore complexes and regulate centrosome and nuclear positioning during mitotic entry. PLoS Biol 8:e1000350

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Starr DA, Williams BC, Hays TS, Goldberg ML (1998) ZW10 helps recruit dynactin and dynein to the kinetochore. J Cell Biol 142:763–774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stehman SA, Chen Y, McKenney RJ, Vallee RB (2007) NudE and NudEL are required for mitotic progression and are involved in dynein recruitment to kinetochores. J Cell Biol 178:583–594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steinman JB, Santarossa CC, Miller RM, Yu LS, Serpinskaya AS, Furukawa H, Morimoto S, Tanaka Y, Nishitani M, Asano M et al (2017) Chemical structure-guided design of dynapyrazoles, cell-permeable dynein inhibitors with a unique mode of action. elife 6:e25174

    Article  PubMed  PubMed Central  Google Scholar 

  • Tai C-Y, Dujardin DL, Faulkner NE, Vallee RB (2002) Role of dynein, dynactin, and CLIP-170 interactions in LIS1 kinetochore function. J Cell Biol 156:959–968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanenbaum ME, Medema RH (2010) Mechanisms of centrosome separation and bipolar spindle assembly. Dev Cell 19:797–806

    Article  CAS  PubMed  Google Scholar 

  • Tanenbaum ME, Akhmanova A, Medema RH (2010) Dynein at the nuclear envelope. EMBO Rep 11:649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thankachan JM, Nuthalapati SS, Addanki Tirumala N, Ananthanarayanan V (2017) Fission yeast myosin I facilitates PI(4,5)P2-mediated anchoring of cytoplasmic dynein to the cortex. Proc Natl Acad Sci USA 114:E2672–E2681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toba S, Watanabe TM, Yamaguchi-Okimoto L, Toyoshima YY, Higuchi H (2006) Overlapping hand-over-hand mechanism of single molecular motility of cytoplasmic dynein. Proc Natl Acad Sci USA 103:5741–5745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torisawa T, Ichikawa M, Furuta A, Saito K, Oiwa K, Kojima H, Toyoshima YY, Furuta Ky (2014) Autoinhibition and cooperative activation mechanisms of cytoplasmic dynein. Nat Cell Biol 16:1118–1124

    Article  CAS  PubMed  Google Scholar 

  • Toropova K, Zou S, Roberts AJ, Redwine WB, Goodman BS, Reck-Peterson SL, Leschziner AE (2014) Lis1 regulates dynein by sterically blocking its mechanochemical cycle. elife 3:e03372

    Article  PubMed Central  Google Scholar 

  • Tousson A, Zeng C, Brinkley BR, Valdivia MM (1991) Centrophilin: a novel mitotic spindle protein involved in microtubule nucleation. J Cell Biol 112:427–440

    Article  CAS  PubMed  Google Scholar 

  • Urnavicius L, Zhang K, Diamant AG, Motz C, Schlager MA, Yu M, Patel NA, Robinson CV, Carter AP (2015) The structure of the dynactin complex and its interaction with dynein. Science 347:1441–1446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Urnavicius L, Lau CK, Elshenawy MM, Morales-Rios E, Motz C, Yildiz A, Carter AP (2018) Cryo-EM shows how dynactin recruits two dyneins for faster movement. Nature 554:202–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uteng M, Hentrich C, Miura K, Bieling P, Surrey T (2008) Poleward transport of Eg5 by dynein–dynactin in Xenopus laevis egg extract spindles. J Cell Biol 182:715–726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vale RD, Milligan RA (2000) The way things move: looking under the Hood of molecular motor proteins. Science 288:88

    Article  CAS  PubMed  Google Scholar 

  • Vallee RB, Varma D, Dujardin DL (2006) ZW10 function in mitotic checkpoint control, dynein targeting, and membrane trafficking: is dynein the unifying theme? Cell Cycle 5:2447–2451

    Article  CAS  PubMed  Google Scholar 

  • Vallee RB, McKenney RJ, Ori-McKenney KM (2012) Multiple modes of cytoplasmic dynein regulation. Nat Cell Biol 14:224

    Article  CAS  PubMed  Google Scholar 

  • van Heesbeen RGHP, Raaijmakers JA, Tanenbaum ME, Medema RH (2013) Nuclear envelope-associated dynein cooperates with Eg5 to drive prophase centrosome separation. Commun Integr Biol 6:e23841

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Verde F, Berrez JM, Antony C, Karsenti E (1991) Taxol-induced microtubule asters in mitotic extracts of Xenopus eggs: requirement for phosphorylated factors and cytoplasmic dynein. J Cell Biol 112:1177–1187

    Article  CAS  PubMed  Google Scholar 

  • Vergnolle MA, Taylor SS (2007) Cenp-F links kinetochores to Ndel1/Nde1/Lis1/dynein microtubule motor complexes. Curr Biol 17:1173–1179

    Article  CAS  PubMed  Google Scholar 

  • Visscher K, Schnitzer MJ, Block SM (1999) Single kinesin molecules studied with a molecular force clamp. Nature 400:184–189

    Article  CAS  PubMed  Google Scholar 

  • Walenta JH, Didier AJ, Liu X, Krämer H (2001) The Golgi-associated Hook3 protein is a member of a novel family of microtubule-binding proteins. J Cell Biol 152:923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Zhan Q (2007) Cell cycle-dependent expression of Centrosomal Ninein-like protein in human cells is regulated by the anaphase-promoting complex. J Biol Chem 282:17712–17719

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Zheng Y (2011) Identification of a novel dynein binding domain in Nudel essential for spindle pole Organization in Xenopus egg Extract. J Biol Chem 286:587–593

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Ketcham SA, Schön A, Goodman B, Wang Y, Yates J, Freire E, Schroer TA, Zheng Y (2013) Nudel/NudE and Lis1 promote dynein and dynactin interaction in the context of spindle morphogenesis. Mol Biol Cell 24:3522–3533

    Article  PubMed  PubMed Central  Google Scholar 

  • Willins DA, Liu B, Xiang X, Morris NR (1997) Mutations in the heavy chain of cytoplasmic dynein suppress the nudF nuclear migration mutation of aspergillus nidulans. Mol Gen Genet 255:194–200

    Article  CAS  PubMed  Google Scholar 

  • Wynshaw-Boris A (2007) Lissencephaly and LIS1: insights into the molecular mechanisms of neuronal migration and development. Clin Genet 72:296–304

    Article  CAS  PubMed  Google Scholar 

  • Xiang X, Osmani AH, Osmani SA, Xin M, Morris NR (1995) NudF, a nuclear migration gene in aspergillus nidulans, is similar to the human LIS-1 gene required for neuronal migration. Mol Biol Cell 6:297–310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yagi T (2009) Chapter 1 – Bioinformatic approaches to dynein heavy chain classification. In: King SM, Pazour GJ (eds) Methods in cell biology. Academic Press, New York, pp 1–9

    Google Scholar 

  • Yang CH, Lambie EJ, Snyder M (1992) NuMA: an unusually long coiled-coil related protein in the mammalian nucleus. J Cell Biol 116:1303–1317

    Article  CAS  PubMed  Google Scholar 

  • Yang Z, Tulu US, Wadsworth P, Rieder CL (2007) Kinetochore dynein is required for chromosome motion and congression independent of the spindle checkpoint. Curr Biol 17:973–980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye S, Fowler TW, Pavlos NJ, Ng PY, Liang K, Feng Y, Zheng M, Kurten R, Manolagas SC, Zhao H (2011) LIS1 regulates osteoclast formation and function through its interactions with dynein/dynactin and Plekhm1. PLoS One 6:e27285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yeh TY, Quintyne NJ, Scipioni BR, Eckley DM, Schroer TA (2012) Dynactin’s pointed-end complex is a cargo-targeting module. Mol Biol Cell 23:3827–3837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yeh TY, Kowalska AK, Scipioni BR, Cheong FKY, Zheng M, Derewenda U, Derewenda ZS, Schroer TA (2013) Dynactin helps target polo-like kinase 1 to kinetochores via its left-handed beta-helical p27 subunit. EMBO J 32:1023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Yao X, Fischer L, Abenza JF, Penalva MA, Xiang X (2011) The p25 subunit of the dynactin complex is required for dynein-early endosome interaction. J Cell Biol 193:1245–1255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Qiu R, Arst HN Jr, Penalva MA, Xiang X (2014) HookA is a novel dynein-early endosome linker critical for cargo movement in vivo. J Cell Biol 204:1009–1026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang K, Foster HE, Rondelet A, Lacey SE, Bahi-Buisson N, Bird AW, Carter AP (2017) Cryo-EM reveals how human cytoplasmic dynein is auto-inhibited and activated. Cell 169:1303–1314. e1318

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zimdahl B, Ito T, Blevins A, Bajaj J, Konuma T, Weeks J, Koechlein CS, Kwon HY, Arami O, Rizzieri D et al (2014) Lis1 regulates asymmetric division in hematopoietic stem cells and in leukemia. Nat Genet 46:245–252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Żyłkiewicz E, Kijańska M, Choi W-C, Derewenda U, Derewenda ZS, Stukenberg PT (2011) The N-terminal coiled-coil of Ndel1 is a regulated scaffold that recruits LIS1 to dynein. J Cell Biol 192:433–445

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

D.D. acknowledges financial support from the Council of Scientific and Industrial Research (CSIR)-University Grants Commission (UGC) and IISER Mohali. M.S. acknowledges financial support from the Wellcome Trust/Department of Biotechnology (DBT) India Alliance [grant number IA/I/12/1/500523] and IISER Mohali. M.S. is a recipient of the Wellcome Trust/DBT India Alliance Intermediate Fellowship and SERB Women Excellence Award.

Contributions

D.D. reviewed the literature and wrote the manuscript. M.S. helped in literature review and in writing and editing the manuscript. The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Devashish Dwivedi or Mahak Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dwivedi, D., Sharma, M. (2018). Multiple Roles, Multiple Adaptors: Dynein During Cell Cycle. In: Chattopadhyay, K., Basu, S. (eds) Biochemical and Biophysical Roles of Cell Surface Molecules. Advances in Experimental Medicine and Biology, vol 1112. Springer, Singapore. https://doi.org/10.1007/978-981-13-3065-0_2

Download citation

Publish with us

Policies and ethics