Skip to main content

Status of Membrane Asymmetry in Erythrocytes: Role of Spectrin

  • Chapter
  • First Online:
Biochemical and Biophysical Roles of Cell Surface Molecules

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1112))

Abstract

Spectrin-based proteinaceous membrane skeletal network has been found to be implicated in membrane disorders like hereditary spherocytosis (HS). HS greatly affects eryptosis via loss of membrane asymmetry which is seen to be the case in haemoglobin disorders like thalassemia and sickle cell disease as well. The biological implications of the status of membrane asymmetry are strongly correlated to spectrin interactions with aminophospholipids, e.g. PE and PS. Fluorescence and X-ray reflectivity (XRR) measurements of spectrin interactions with small unilamellar vesicles (SUVs) and cushioned bilayers of phospholipids, respectively, were studied. Both the XRR and fluorescence measurements led to the characterization of spectrin orientation on the surface of lipid bilayer of phosphatidylcholine (PC) and PC/aminophospholipid mixed membrane systems showing formation of a uniform layer of spectrin on top of the mixed phospholipid bilayer. Fluorescence studies show that spectrin interacts with PC and phosphatidylethanolamine (PE)/phosphatidylserine (PS) membranes with binding dissociation constants (Kd) in the nanomolar range indicating the role of spectrin in the maintenance of the overall membrane asymmetry of erythrocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

DM:

Dimyristoyl

HE:

Hereditary elliptocytosis

HS:

Hereditary spherocytosis

PC:

Phosphatidylcholine

PE:

Phosphatidylethanolamine

PG:

Phosphoglycerate

PI:

Phosphatidylinositol

PS:

Phosphatidylserine

SUV:

Small unilamellar vesicles

References

  • Alessandrini A, Facci P (2011) Unraveling lipid/protein interaction in model lipid bilayers by atomic force microscopy. J Mol Recognit 24:387–396

    Article  CAS  Google Scholar 

  • An XL, Takakuwa Y, Manno S, Han BG, Gascard P, Mohandas N (2001) Structural and functional characterization of protein 4.1R-phosphatidylserine interaction: potential role in 4.1R sorting within cells. J Biol Chem 276:35778–35785

    Article  CAS  Google Scholar 

  • An X, Zhang X, Debnath G, Baines AJ, Mohandas N (2006) Phosphatidylinositol-4,5-biphosphate (PIP2) differentially regulates the interaction of human erythrocyte protein 4.1 (4.1R) with membrane proteins. Biochemistry 45:5725–5732

    Article  CAS  Google Scholar 

  • Basu A, Chakrabarti A (2015) Defects in erythrocyte membrane skeletal architecture. Adv Exp Med Biol 842:41–59

    Article  CAS  Google Scholar 

  • Basu JK, Sanyal MK (2002) Ordering and growth of Langmuir–Blodgett films: x-ray scattering studies. Phys Rep 363:1–84

    Article  CAS  Google Scholar 

  • Basu S, Banerjee D, Chandra S, Chakrabarti A (2010) Eryptosis in hereditary spherocytosis and thalassemia: role of glycoconjugates. Glycoconj J 27:717–722

    Article  CAS  Google Scholar 

  • Biernatowska A, Podkalicka J, Majkowski M, Hryniewicz-Jankowska A, Augoff K, Kozak K, Korzeniewski J, Sikorski AF (2013) The role of MPP1/p55 and its palmitoylation in resting state raft organization in HEL cells. Biochim Biophys Acta 1833:1876–1884

    Article  CAS  Google Scholar 

  • Chakrabarti A, Datta P, Bhattacharya D, Basu S, Saha S (2008) Oxidative crosslinking, spectrin and membrane interactions of hemoglobin mixtures in HbEbeta-thalassemia. Hematology 13:361–368

    Article  CAS  Google Scholar 

  • Datta P, Basu S, Chakravarty SB, Chakravarty A, Banerjee D, Chandra S, Chakrabarti A (2006) Enhanced oxidative cross-linking of hemoglobin E with spectrin and loss of erythrocyte membrane asymmetry in hemoglobin Ebeta-thalassemia. Blood Cells Mol Dis 37:77–81

    Article  CAS  Google Scholar 

  • DeWolf C, McCauley P, Sikorski AF, Winlove CP, Bailey AI, Kahana E, Pinder JC, Gratzer WB (1997) Interaction of dystrophin fragments with model membranes. Biophys J 72:2599–2604

    Article  CAS  Google Scholar 

  • Diakowski W, Szopa J, Sikorski AF (2003) Occurrence of lipid receptors inferred from brain and erythrocyte spectrins binding NaOH-extracted and protease-treated neuronal and erythrocyte membranes. Biochim Biophys Acta 1611:115–122

    Article  CAS  Google Scholar 

  • Edidin M (2006) Switching sides: the actin/membrane lipid connection. Biophys J 91:3963

    Article  CAS  Google Scholar 

  • El-khouri RJ, Bricarello DA, Watkins EB, Kim CY, Miller CE, Patten TE, Parikh AN, Kuhl TL (2011) pH responsive polymer cushions for probing membrane environment interactions. Nano Lett 11:2169–2172

    Article  CAS  Google Scholar 

  • Fadeel B, Xue D (2009) The ins and outs of phospholipid asymmetry in the plasma membrane: roles in health and disease. Crit Rev Biochem Mol Biol 44(5):264–277

    Article  CAS  Google Scholar 

  • Gallagher PG (2005) Red cell membrane disorders. Hematology Am Soc Hematol Educ Program 2005:13–18

    Article  Google Scholar 

  • Gauthier E, Guo X, Mohandas N, An X (2011) Phosphorylation-dependent perturbations of the 4.1R-associated multiprotein complex of the erythrocyte membrane. Biochemistry 50:4561–4567

    Article  CAS  Google Scholar 

  • Gicquaud C (1993) Actin conformation is drastically altered by direct interaction with membrane lipids: a differential scanning calorimetry study. Biochemistry 32:11873–11877

    Article  CAS  Google Scholar 

  • Gicquaud C, Wong P (1994) Mechanism of interaction between actin and membrane lipids: a pressure-tuning infrared spectroscopy study. Biochem J 303. (Pt 3:769–774

    Article  CAS  Google Scholar 

  • Giri RP, Chakrabarti A, Mukhopadhyay MK (2017) Cholesterol-induced structural changes in saturated phospholipid model membranes revealed through x-ray scattering technique. J Phys Chem B 121:4081–4090

    Article  CAS  Google Scholar 

  • Grzybek M, Chorzalska A, Bok E, Hryniewicz-Jankowska A, Czogalla A, Diakowski W, Sikorski AF (2006) Spectrin-phospholipid interactions. Existence of multiple kinds of binding sites? Chem Phys Lipids 141:133–141

    Article  CAS  Google Scholar 

  • Hyvonen M, Macias MJ, Nilges M, Oschkinat H, Saraste M, Wilmanns M (1995) Structure of the binding site for inositol phosphates in a PH domain. EMBO J 14:4676–4685

    Article  CAS  Google Scholar 

  • Juliano RL, Kimelberg HK, Papahadjopoulos D (1971) Synergistic effects of a membrane protein (spectrin) and Ca 2+ on the Na + permeability of phospholipid vesicles. Biochim Biophys Acta 241:894–905

    Article  CAS  Google Scholar 

  • Kennedy SP, Warren SL, Forget BG, Morrow JS (1991) Ankyrin binds to the 15th repetitive unit of erythroid and nonerythroid beta-spectrin. J Cell Biol 115:267–277

    Article  CAS  Google Scholar 

  • Lach A, Grzybek M, Heger E, Korycka J, Wolny M, Kubiak J, Kolondra A, Boguslawska DM, Augoff K, Majkowski M, Podkalicka J, Kaczor J, Stefanko A, Kuliczkowski K, Sikorski AF (2012) Palmitoylation of MPP1 (membrane-palmitoylated protein 1)/p55 is crucial for lateral membrane organization in erythroid cells. J Biol Chem 287:18974–18984

    Article  CAS  Google Scholar 

  • Listowski MA, Leluk J, Kraszewski S, Sikorski AF (2015) Cholesterol interaction with the MAGUK protein family member, MPP1, via CRAC and CRAC-like motifs: an in silico docking analysis. PLoS One 10:e0133141

    Article  Google Scholar 

  • Liu AP, Fletcher DA (2006) Actin polymerization serves as a membrane domain switch in model lipid bilayers. Biophys J 91:4064–4070

    Article  CAS  Google Scholar 

  • Machnicka B, Czogalla A, Hryniewicz-Jankowska A, Boguslawska DM, Grochowalska R, Heger E, Sikorski AF (2014) Spectrins: a structural platform for stabilization and activation of membrane channels, receptors and transporters. Biochim Biophys Acta 1838:620–634

    Article  CAS  Google Scholar 

  • Mitra M, Patra M, Chakrabarti A (2015) Fluorescence study of the effect of cholesterol on spectrin-aminophospholipid interactions. Eur Biophys J 44:635–645

    Article  CAS  Google Scholar 

  • Mombers C, de Gier J, Demel RA, van Deenen LL (1980) Spectrin-phospholipid interaction. A monolayer study. Biochim Biophys Acta 603:52–62

    Article  CAS  Google Scholar 

  • Nebl T, Pestonjamasp KN, Leszyk JD, Crowley JL, Oh SW, Luna EJ (2002) Proteomic analysis of a detergent-resistant membrane skeleton from neutrophil plasma membranes. J Biol Chem 277:43399–43409

    Article  CAS  Google Scholar 

  • Parratt LG (1954) Surface studies of solids by total reflection of x-rays. Phys Rev 95:359–369

    Article  Google Scholar 

  • Podkalicka J, Biernatowska A, Majkowski M, Grzybek M, Sikorski AF (2015) MPP1 as a factor regulating phase separation in Giant plasma membrane-derived vesicles. Biophys J 108:2201–2211

    Article  CAS  Google Scholar 

  • Ray S, Chakrabarti A (2004) Membrane interaction of erythroid spectrin: surface-density-dependent high-affinity binding to phosphatidylethanolamine. Mol Membr Biol 21:93–100

    Article  CAS  Google Scholar 

  • Salomao M, Zhang X, Yang Y, Lee S, Hartwig JH, Chasis JA, Mohandas N, An X (2008) Protein 4.1R-dependent multiprotein complex: new insights into the structural organization of the red blood cell membrane. Proc Natl Acad Sci USA 105:8026–8031

    Article  CAS  Google Scholar 

  • Saraste M, Hyvonen M (1995) Pleckstrin homology domains: a fact file. Curr Opin Struct Biol 5:403–408

    Article  CAS  Google Scholar 

  • Sikorski AF, Hanus-Lorenz B, Jezierski A, Dluzewski AR (2000) Interaction of membrane skeletal proteins with membrane lipid domain. Acta Biochim Pol 47:565–578

    CAS  PubMed  Google Scholar 

  • Sweet C, Zull JE (1970) Interaction of the erythrocyte--membrane protein, spectrin, with model membrane systems. Biochem Biophys Res Commun 41:135–141

    Article  CAS  Google Scholar 

  • Takenawa T, Itoh T (2001) Phosphoinositides, key molecules for regulation of actin cytoskeletal organization and membrane traffic from the plasma membrane. Biochim Biophys Acta 1533:190–206

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhijit Chakrabarti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sarkar, S., Bose, D., Giri, R.P., Mukhopadhyay, M.K., Chakrabarti, A. (2018). Status of Membrane Asymmetry in Erythrocytes: Role of Spectrin. In: Chattopadhyay, K., Basu, S. (eds) Biochemical and Biophysical Roles of Cell Surface Molecules. Advances in Experimental Medicine and Biology, vol 1112. Springer, Singapore. https://doi.org/10.1007/978-981-13-3065-0_1

Download citation

Publish with us

Policies and ethics