Skip to main content

Nonlinear Dynamical Model for DNA

  • Chapter
  • First Online:
Advances in Mathematical Inequalities and Applications

Part of the book series: Trends in Mathematics ((TM))

Abstract

This chapter deals with a nonlinear dynamical system arising in the analysis of the double-chain model in deoxyribonucleic acid (DNA). Bernoulli sub-equation function method and modified exp \( \left( { -\Omega \left(\upxi \right)} \right) \)-expansion function method to obtain some novel dynamical structures to the nonlinear dynamical system are used. We construct some new exponential, hyperbolic and complex periodic wave solutions to this model. Under some suitable values of parameters, we plot the 2D and 3D graphics of the solutions obtained in this study. All the solutions found in this study satisfy the nonlinear dynamical system. Moreover, these solutions can be used to explain some new significant physical meanings of the nonlinear dynamical model for DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Atangana, J.F. Botha, Analytical solution of the groundwater flow equation obtained via homotopy decomposition method. J. Earth Sci. Climatic Change 3(2), 115 (2012)

    Google Scholar 

  2. A. Atangana, A novel model for the lassa hemorrhagic fever: deathly disease for pregnant women. Neural Comput. Appl. 26(8), 1895–1903 (2015)

    Article  Google Scholar 

  3. A.M. Wazwaz, Abundant solutions of various physical features for the (2 + 1)-dimensional modified KdV-Calogero-Bogoyavlenskii-Schiff equation. Nonlinear Dyn. 89(3), 1727–1732 (2017)

    Article  MathSciNet  Google Scholar 

  4. A.M. Wazwaz, S.A. El-Tantawy, A new integrable (3 + 1)-dimensional KdV-like model with its multiple-soliton solutions. Nonlinear Dyn. 83(3), 1529–1534 (2016)

    Article  MathSciNet  Google Scholar 

  5. A.M. Wazwaz, Gaussian solitary wave solutions for nonlinear evolution equations with logarithmic nonlinearities. Nonlinear Dyn. 83(1–2), 591–596 (2016)

    Article  MathSciNet  Google Scholar 

  6. W.X. Ma, T. Huang, Y. Zhang, A multiple exp-function method for nonlinear differential equations and its application. Phys. Scr. 82(6), 065003 (2010)

    Article  Google Scholar 

  7. W.X. Ma, Lump solutions to the Kadomtsev-Petviashvili equation. Phys. Lett. A 379(36), 1975–1978 (2015)

    Article  MathSciNet  Google Scholar 

  8. W.X. Ma, A. Abdeljabbar, A bilinear Bäcklund transformation of a (3 + 1)-dimensional generalized KP equation. Appl. Mathe. Lett. 25(10), 1500–1504 (2012)

    Article  Google Scholar 

  9. H.M. Baskonus, T.A. Sulaiman, H. Bulut, On the novel wave behaviors to the coupled nonlinear maccari’s system with complex structure. Optik 131, 1036–1043 (2017)

    Article  Google Scholar 

  10. H. Bulut, T.A. Sulaiman, H.M. Baskonus, New solitary and optical wave structures to the korteweg-de vries equation with dual-power law nonlinearity. Opt. Quant. Electron. 48(564), 1–14 (2016)

    Google Scholar 

  11. H. Bulut, T.A. Sulaiman, H.M. Baskonus, A.A. Sandulyak, New solitary and optical wave structures to the (1 + 1)-dimensional combined KdV-mKdV equation. Optik 135, 327–336 (2017)

    Article  Google Scholar 

  12. D. Xu, Integro-differential equations and delay integral inequalities. Tohoku Mathe. J. 44, 365–378 (1992)

    Article  MathSciNet  Google Scholar 

  13. Y. Huang, D. Xu, Z. Yang, Dissipativity and periodic attractor for non-autonomous neural networks with time-varying delays. Neurocomputing 70, 2953–2958 (2007)

    Article  Google Scholar 

  14. D. Xu, Z. Yang, Impulsive delay differential inequality and stability of neural networks. J. Mathe. Anal. Appl. 305, 107–120 (2005)

    Article  MathSciNet  Google Scholar 

  15. D. Xu, W. Zhu, S. Long, Global exponential stability of impulsive integro-differential equation. Nonlinear Anal. 64, 2805–2816 (2006)

    Article  MathSciNet  Google Scholar 

  16. Z. Yang, D. Xu, Impulsive effects on stability of Cohen-Grossberg neural networks with variable delays. Appl. Math. Comput. 177, 63–78 (2006)

    MathSciNet  MATH  Google Scholar 

  17. D. Xu, Z. Yang, Attracting and invariant sets for a class of impulsive functional differential equations. J. Math. Anal. Appl. 329, 1036–1044 (2007)

    Article  MathSciNet  Google Scholar 

  18. K. Gopalsamy, Stability and Oscillations in Delay Differential Equations of Population Dynamics (Kluwer Academic, Dordrecht, 1992)

    Book  Google Scholar 

  19. A. Halanay, Differential Equations: Stability, Oscillations, Time Lages (Academic Press, New York, 1966)

    MATH  Google Scholar 

  20. D. Xu, X. Wang, A new nonlinear integro-differential inequality and its application. Appl. Math. Lett. 22(11), 1721–1726 (2009)

    Article  MathSciNet  Google Scholar 

  21. J. Blanco, Socio-territorial inequality and differential mobility. J. Transp. Geogr. (2017)

    Google Scholar 

  22. Y. Sun, Absence of nonnegative solutions to the system of differential inequalities on manifolds. J. Math. Anal. Appl. 450(2), 901–914 (2017)

    Article  MathSciNet  Google Scholar 

  23. B. Qian, Differential Harnack inequalities and Perelman type entropy formulae for subelliptic operators. Nonlinear Anal. 155, 163–175 (2017)

    Article  MathSciNet  Google Scholar 

  24. L.P. de Nápoli, J.P. Pinasco, Lyapunov-type inequalities for partial differential equations. J. Funct. Anal. 270(6), 1995–2018 (2016)

    Article  MathSciNet  Google Scholar 

  25. K. Chunga, T. Toulkeridis, First evidence of aleo-tsunami deposits of a major historic event in Ecuador. J. Tsunami Soc. Int. 33(1), 55–69 (2014)

    Google Scholar 

  26. K. De-Xing, L. Sen-Yue, Z. Jin, Nonlinear dynamics in a new double chain-model of DNA. Commun. Theor. Phys. 36, 737–742 (2001)

    Article  Google Scholar 

  27. W. Alka, A. Goyal, C.N. Kumar, Nonlinear dynamics of dna-riccati generalized solitary wave solutions. Phys. Lett. A 375, 480–483 (2011)

    Article  Google Scholar 

  28. M.A.E. Abdelrahman, E.H.M. Zahran, M.M.A. Khater, The exp(-ϕ(xi))-expansion method and its application for solving nonlinear evolution equations. Int. J. Mod. Nonlinear Theory Appl. 4, 37–47 (2015)

    Google Scholar 

  29. S.J. Webb, A.D. Booth, Absorption of microwaves by microorganisms. Nature 222, 1199–1200 (1969)

    Article  Google Scholar 

  30. M.L. Swicord, C.C. Davis, Microwave absorption of DNA between 8 and 12 GHz. Biopolymers 21, 2453–2460 (1982)

    Article  Google Scholar 

  31. M.L. Swicord, C.C. Davis, An optical method of investigating the microwave absorption characteristics of DNA and other biomolecules in solution. Bioelectromagnetics 4, 21–42 (1983)

    Article  Google Scholar 

  32. G. Gabriel, E.H. Grant, R. Tata, P.R. Brown, B. Gestblom, E. Noreland, Microwave absorption in aqueous solutions of DNA. Nature 328, 145–146 (1987)

    Article  Google Scholar 

  33. L.V. Yakushevich, Nonlinear Physics of DNA. Wiley, United Kingdom, ISBN: 10 0471978248 (1998)

    Google Scholar 

  34. M. Bixon, J. Jortner, Energetic control and kinetics of hole migration in DNA. J. Phys. Chem. 104, 3906–3913 (2000)

    Article  Google Scholar 

  35. P.T. Henderson , D. M. Jones, Y. Kan, Hampikian, Schuster GB, Long-distance charge transport in duplex DNA: the phonon assisted polaron-like hopping mechanism. Proc. Natl. Acad. Sci. USA 96, 8353–8358 (1999)

    Article  Google Scholar 

  36. R. Bruinsma, G. Gruner, M.R. D’Orsogna, J. Rudnik, Fluctuation-facilitated charge migration along DNA. Phys. Rev. Lett. 85, 4393–4396 (2000)

    Article  Google Scholar 

  37. G. Gabriel, E.H. Grant, R. Tata, P.R. Brown, B. Gestblom, E. Noreland, Microwave absorption in aqueous solutions of DNA. Nature 328, 145–146 (1987)

    Article  Google Scholar 

  38. L.L. Van Zandt, Resonant microwave absorption by dissolved DNA. Phys. Rev. Lett. 57, 2085–2087 (1986)

    Article  Google Scholar 

  39. L.L. Van Zandt, M.E. Davis, Theory of anomalous resonant absorption of DNA at microwave frequencies. J. Biomol. Struct. Dyn. 3, 1045–1053 (1986)

    Article  Google Scholar 

  40. V. Muto, A.C. Scott, P.L Christiansen, Microwave and thermal generation of solitons in DNA. J. Phys. 50(C3, suppl. N3), 217–222 (1989)

    Article  Google Scholar 

  41. V. Muto, J. Holding, P.L. Christiansen, A.C. Scott, Solitons in DNA. J. Biomol. Struct. Dyn. 5, 873–894 (1988)

    Article  Google Scholar 

  42. Ch.T. Zhang, Harmonic and subharmonic resonances of microwave absorption in DNA. Phys. Rev. A 40, 2148–2153 (1989)

    Article  Google Scholar 

  43. M.D. Barkley, B.H. Zimm, Theory of twisting and bending of chain macromolecules; analysis of the fluorescence depolarization of DNA. J. Chem. Phys. 70, 2991–3007 (1979)

    Article  Google Scholar 

  44. B. Zheng, Application of a generalized bernoulli sub-ode method for finding traveling solutions of some nonlinear equations. WSEAS Trans. Math. 7(11), 618–626 (2012)

    Google Scholar 

  45. M.N. Alam, M.G. Hafez, M.A. Akbar, H.O. Roshid, Exact solutions to the (2 + 1)-Dimensional boussinesq equation via exp(Φ(η))-expansion Method. J. Sci. Res. 7(3), 1–10 (2015)

    Article  Google Scholar 

  46. M.G. Hafez, Md. Nur Alam, M. Ali Akbar, Application of the exp exp(−Φ(η))-expansion method to find exact solutions for the solitary wave equation in an unmagnatized dusty plasma. World Appl. Sci. J. 32(10), 2150–2155 (2014)

    Google Scholar 

  47. F. Ozpinar, H.M. Baskonus, H. Bulut, On the complex and hyperbolic structures for the (2 + 1)-dimensional boussinesq water equation. Entropy 17(12), 8267–8277 (2015)

    Article  Google Scholar 

  48. H.M. Baskonus, H. Bulut, A. Atangana, On the complex and hyperbolic structures of longitudinal wave equation in a magneto-electro-elastic circular rod. Smart Mater. Struct. 25(3), 035022, (8 pp) (2016)

    Article  Google Scholar 

  49. H. Bulut, H.M. Baskonus, New complex hyperbolic function solutions for the (2 + 1)-dimensional dispersive long water-wave system. Math. Comput. Appl. 21(2), 6 (2016)

    MathSciNet  Google Scholar 

  50. H.M. Baskonus, D.A. Koç, H.B. Dark, New travelling wave solutions to the nonlinear evolution equation. Optik- Int. J. Light Electron. Opt. 127, 8043–8055 (2016)

    Article  Google Scholar 

  51. Z.F. Koçak, H. Bulut, H.M. Baskonus, D.A. Koc, Prototype traveling wave solutions of new coupled konno-oono equation. Optik- Int. J. Light Electron Opt. 127, 10786–10794 (2016)

    Article  Google Scholar 

  52. H.M. Baskonus, H. Bulut, F.B.M. Belgacem, Analytical solutions for nonlinear long-short wave interaction systems with highly complex structure. J. Comput. Appl. Math. 312, 257–266 (2017)

    Article  MathSciNet  Google Scholar 

  53. H. Bulut, G. Yel, Haci mehmet baskonus. Novel structure to the coupled nonlinear maccari’s system by using modified trial equation method, advanced mathematical models and applications 7(2), 14–19 (2017)

    Google Scholar 

  54. O.A. Ilhan, H. Bulut, T.A. Sulaiman, H.M. Baskonus, Dynamic of solitary wave solutions in some nonlinear pseudo parabolic models and Dodd-Bullough-Mikhailov equation. Indian J. Phys. Accepted (2018)

    Google Scholar 

  55. T.A. Sulaiman, T.A., H. Bulut, H.M. Baskonus, Investigation of various soliton solutions to the Heisenberg ferromagnetic spin chain equation. J. Electromagn. Waves Appl. Accepted, (2018)

    Google Scholar 

  56. M.L. Wang, X.Z. Li, J. Zhang, The (G′/G)-expansion method and traveling wave solutions of nonlinear evolution equations in mathematical physics. Phys. Lett. A 372, 417–423 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo Cattani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Baskonus, H.M., Cattani, C. (2018). Nonlinear Dynamical Model for DNA. In: Agarwal, P., Dragomir, S., Jleli, M., Samet, B. (eds) Advances in Mathematical Inequalities and Applications. Trends in Mathematics. Birkhäuser, Singapore. https://doi.org/10.1007/978-981-13-3013-1_7

Download citation

Publish with us

Policies and ethics