Skip to main content

On Sherman Method to Deriving Inequalities for Some Classes of Functions Related to Convexity

  • Chapter
  • First Online:

Part of the book series: Trends in Mathematics ((TM))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. S. Abramovich, S. Banić, M. Matić, Superquadratic functions in several variables. J. Math. Anal. Appl. 327, 1444–1460 (2007)

    Article  MathSciNet  Google Scholar 

  2. S. Abramovich, S. Ivelić, J.E. Pečarić, Improvement of Jensen-Steffensen’s inequality for superquadratic functions. Banach J. Math. Anal. 4, 159–169 (2010)

    Article  MathSciNet  Google Scholar 

  3. S. Abramovich, G. Jameson, G. Sinnanon, Inequalities for averages of convex and superquadratic functions. J. Inequal. Pure Appl. Math. 5 (2004) Article 91

    Google Scholar 

  4. S. Abramovich, G. Jameson, G. Sinnanon, Refining Jensen’s inequality. Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 47(95) (1–2), 3–14 (2004)

    Google Scholar 

  5. M. Baes, Convexity and differentiability properties of spectral functions and spectral mappings on Euclidean Jordan algebras. Linear Algebra Appl. 422, 664–700 (2007)

    Article  MathSciNet  Google Scholar 

  6. S. Banić, M. Klaričić Bakula, Jensen’s inequality for functions superquadratic on the coordinates. J. Math. Inequal. 9, 1365–1375 (2015)

    Google Scholar 

  7. S. Banić, S. Varošanec, Functional inequalities for superquadratic functions. Int. J. Pure Appl. Math. 43(4), 717–729 (2008)

    MathSciNet  MATH  Google Scholar 

  8. S. Banić, J. Pečarić, S. Varošanec, Superquadratic functions and refinements of some classical inequalities. J. Korean Math. Soc. 45(2), 513–525 (2008)

    Article  MathSciNet  Google Scholar 

  9. J. Borcea, Equilibrium points of logarithmic potentials. Trans. Amer. Math. Soc. 359, 3209–3237 (2007)

    Article  MathSciNet  Google Scholar 

  10. W.W. Breckner, T. Trif, Convex Functions and Related Functional Equations: Selected Topics (Cluj University Press, Cluj, 2008)

    MATH  Google Scholar 

  11. A.-M. Burtea, Two examples of weighted majorization. An. Univ. Craiova Ser. Mat. Inform. 37(2), 92–99 (2000)

    MathSciNet  MATH  Google Scholar 

  12. I. Csiszár, Information-type measures of differences of probability distributions and indirect observations. Studia Sci. Math. Hung. 2, 299–318 (1967)

    MathSciNet  MATH  Google Scholar 

  13. I. Csiszár, J. Körner, Information Theory: Coding Theorems for Discrete Memory-less Systems (Academic Press, New York, 1981)

    MATH  Google Scholar 

  14. S.S. Dragomir, A converse inequality for the Csiszar \(\Phi \)-divergence. Tamsui Oxf. J. Math. Sci. 20, 35–53 (2004)

    MathSciNet  MATH  Google Scholar 

  15. S.S. Dragomir, A refinement of Jensen’s inequality with applications for \( f \)-divergence measures. Taiwanese J. Math., 14(1), 153–164 (2010)

    Article  MathSciNet  Google Scholar 

  16. S.S. Dragomir, J.E. Pečarić, L.E. Persson, Properties of some functionals related to Jensen’s inequality. Acta Math. Hung. 70(1–2), 129–143 (1996)

    Article  MathSciNet  Google Scholar 

  17. G.M. Hardy, J.E. Littlewood, G. Pólya, Inequalities, 2nd edn. (Cambridge University Press, Cambridge, 1952)

    MATH  Google Scholar 

  18. J. Karamata, Sur une inégalité rélative aux fonctions convexes. Publ. Math. Univ. Belgrade 1, 145–148 (1932)

    MATH  Google Scholar 

  19. M. Kian, A characterization of mean values for Csiszár inequality and applications. Indagationes Math. 25, 505–515 (2014)

    Article  MathSciNet  Google Scholar 

  20. P.A. Kluza, M. Niezgoda, On Csiszár, Tsallis type f-divergences induced by superquadratic and convex functions. Math. Inequal. Appl. 21(2), 455–467 (2018)

    Google Scholar 

  21. A.W. Marshall, I. Olkin, B.C. Arnold, Inequalities: Theory of Majorization and Its Applications, 2nd edn. (Springer, New York, 2011)

    Book  Google Scholar 

  22. F.-C. Mitroi-Symeonidis, N. Minculete, On the Jensen functional and strong convexity. Bull. Malays. Math. Sci. Soc. 41(1), 311–319 (2018). https://doi.org/10.1007/s40840-015-0293-z

    Article  MathSciNet  Google Scholar 

  23. H.R. Moradi, M.E. Omidvar, M.A. Khan, K. Nikodem, Around Jensen’s inequality for strongly convex functions. Aequat. Math. 92, 25–37 (2018). https://doi.org/10.1007/s00010-017-0496-5

    Article  MathSciNet  Google Scholar 

  24. M. Niezgoda, Remarks on Sherman like inequalities for \((\alpha,\beta )\)-convex functions. Math. Inequal. Appl. 17, 1579–1590 (2014)

    MathSciNet  MATH  Google Scholar 

  25. M. Niezgoda, Vector joint majorization and generalization of Csiszár - Körner’s inequality for \(f\)-divergence. Discrete Appl. Math. 198, 195–205 (2016)

    Article  MathSciNet  Google Scholar 

  26. M. Niezgoda, Sherman, Hermite-Hadamard and Fejér like inequalities for convex sequences and nondecreasing convex functions. Filomat 31(8), 2321–2335 (2017)

    Article  MathSciNet  Google Scholar 

  27. M. Niezgoda, Inequalities for \(H\)-invex functions with applications for uniformly convex and superquadratic functions. Filomat 31(15), 4781–4794 (2017)

    Article  MathSciNet  Google Scholar 

  28. J.E. Pečarić, F. Proschan, Y.L. Tong, Convex Functions, Partial Orderings, and Statistical Applications, Mathematics in Science and Engineering, 187 (Academic Press, Inc., Boston, MA, 1992)

    Google Scholar 

  29. B.T. Polyak, Existence theorems and convergence of minimizing sequences in extremum problems with restrictions. Soviet Math. Dokl. 7, 72–75 (1966)

    Google Scholar 

  30. S. Simić, On a global upper bound for Jensen’s inequality. J. Math. Anal. Appl. 343, 414–419 (2008)

    Article  MathSciNet  Google Scholar 

  31. S. Simić, Best possible global bounds for Jensen’s inequality. Appl. Math. Comput. 215, 2224–2228 (2009)

    Article  MathSciNet  Google Scholar 

  32. S. Sherman, On a theorem of Hardy, Littlewood, Pólya, and Blackwell. Proc. Nat. Acad. Sci. USA 37(1), 826–831 (1957)

    MATH  Google Scholar 

  33. C. Zălinescu, On uniformly convex functions. J. Math. Anal. Appl. 95, 344–374 (1983)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marek Niezgoda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Niezgoda, M. (2018). On Sherman Method to Deriving Inequalities for Some Classes of Functions Related to Convexity. In: Agarwal, P., Dragomir, S., Jleli, M., Samet, B. (eds) Advances in Mathematical Inequalities and Applications. Trends in Mathematics. Birkhäuser, Singapore. https://doi.org/10.1007/978-981-13-3013-1_11

Download citation

Publish with us

Policies and ethics