Skip to main content

Liquid Vapor Deposition Using Liquid Silicon (LVD)

  • Chapter
  • First Online:
Nanoliquid Processes for Electronic Devices
  • 262 Accesses

Abstract

In Chap. 4, a liquid process using silicon ink was described along to the centered production steps shown in Fig. 2.2. In the figure, the other path which enables the fabrication of amorphous silicon films from liquid silicon is also shown at the left side of it. This path is named a liquid-source vapor deposition (LVD) method, which is a kind of thermal CVD in inert gas at atmospheric pressure. In particular, the LVD uses CPS, which is a liquid state, as a gas source. The unique feature of CPS makes the deposition of amorphous silicon possible. Although the LVD is not a liquid process, it utilizes a unique feature of liquid silicon. So it is worth introducing as a variation of liquid process.

In Sect. 5.1, the possibility of the LVD method to make a good amorphous Si films was demonstrated with using a very simple experimental set. The deposition chamber was a petri dish! It was put on a substrate which was heated on a hot plate. Small amount of CPS was attached to the corners of the petri dish and vaporized within the petri dish. Vaporized CPS decomposed and transformed immediately into a-Si:H on the substrate surface. We deposited both intrinsic and doped a-Si:H films at the temperature of 370 °C in nitrogen gas at atmospheric pressure. Deposition process of the LVD was studied, and the properties of the resultant films were investigated.

In Sect. 5.2, a new sophisticated deposition system for LVD, which has better controllability by introducing a unique structure, was developed. In the experimental set used in Sect. 5.1, there was no way to control parameters of evaporation and deposition. As a result, the film quality being represented by a microstructure factor (MSF) was inferior to those obtained by conventional CVD methods. The developed new deposition system enables controlling two process parameters, i.e., processing temperature and CPS supply speed, separately to optimize the process condition. The MSF was improved from 61.2% to 21.4%, while the bandgap was kept constant. The a-Si:H film prepared at 360 °C showed the best performance with the highest photoconductivity of 1.09 × 105 S cm−1 and the lowest dark conductivity of 1.71 × 1011 S cm−1.

This system offers a simple instrument for depositing an a-Si:H film with semiconductor device compatibility, obtaining a high raw material conversion rate and reducing precursor loss. This system doesn’t require storage of large amounts of hazardous gases, since CPS, white phosphorus, and decaborane are in liquid or solid state.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T. Masuda, H. Takagishi, Z. Shen, K. Ohdaira, T. Shimoda, Thin Solid Films 589, 221 (2015)

    Article  CAS  Google Scholar 

  2. E. Hengge, G. Bauer, Angew. Chem. Int. Ed. 12, 316 (1973)

    Article  Google Scholar 

  3. T. Masuda, Y. Matsuki, T. Shimoda, Polymer 53, 2973 (2012)

    Article  CAS  Google Scholar 

  4. E. Hengge, in Plenary Lecture at the 5th International Symposium on Organosilicon Chemistry (Karlsruhe, 1978), p. 14

    Google Scholar 

  5. T. Masuda, Y. Matsuki, T. Shimoda, Thin Solid Films 520, 6603 (2012)

    Article  CAS  Google Scholar 

  6. N.N. Greenwood, A. Earnshaw, Chemistry of the Elements, 2nd edn. (Butterworth-Heinemann/University of Leeds, Oxford/Leeds, 1997)

    Google Scholar 

  7. H. Overhof, P. Thomas, Electronic Transport in Hydrogenated Amorphous Semiconductors (Springer, New-York, 1989)

    Book  Google Scholar 

  8. H. Fritzsche, Sol. Energy Mater. 3, 447 (1980)

    Article  CAS  Google Scholar 

  9. W.E. Spear, Philos. Mag. B 41, 419 (1980)

    Article  CAS  Google Scholar 

  10. N.F. Mott, E.A. Davis, Electronic processes in noncrystalline materials (Oxford University Press, Oxford, 1979)

    Google Scholar 

  11. W.E. Spear, P.G.L. Comber, Philos. Mag. 33, 935 (1976)

    Article  CAS  Google Scholar 

  12. J. Tauc, R. Grigorovici, A. Vancu, Phys. Status Solidi 15, 627 (1966)

    Article  CAS  Google Scholar 

  13. C.C. Tsai, Phys. Rev. B 19, 2041 (1979)

    Article  CAS  Google Scholar 

  14. W.E. Spear, P.G.L. Comber, Solid State Commun. 17, 1193 (1975)

    Article  Google Scholar 

  15. J. Mullerovs, P. Sutta, G.v. Elzakker, M. Zeman, M. Mikula, Appl. Surf. Sci. 254, 3690 (2008)

    Article  Google Scholar 

  16. E. Bhattacharya, A.H. Mahan, Appl. Phys. Lett. 52, 1587 (1988)

    Article  CAS  Google Scholar 

  17. U. Kroll, J. Meier, P. Torres, J. Pohl, A. Shah, J. Non-Cryst. Solids 68, 227 (1998)

    Google Scholar 

  18. M.H. Brodsky, M. Cardona, J.J. Cuomo, Phys. Rev. B 16, 3556 (1977)

    Article  CAS  Google Scholar 

  19. A.A. Langford, M.L. Fleet, B.P. Nelson, W.A. Lanford, N. Maley, Phys. Rev. B 45, 13367 (1992)

    Article  CAS  Google Scholar 

  20. R.A. Street, C.C. Tsai, J. Kakalios, W.B. Jackson, Philos. Mag. B 56, 305 (1987)

    Article  CAS  Google Scholar 

  21. W. Beyer, J. Herion, H. Wagner, J. Non-Cryst. Solids 114, 217 (1989)

    Article  CAS  Google Scholar 

  22. W.E. Keller, H.L. Johnston, J. Chem. Phys. 20, 1749 (1952)

    Article  CAS  Google Scholar 

  23. B. Siegela, J.L. Mack, J. Phys. Chem. 62, 373 (1958)

    Article  Google Scholar 

  24. H.C. Beachell, J.F. Haugh, J. Am. Chem. Soc. 80, 2939 (1958)

    Article  CAS  Google Scholar 

  25. K. Tsutsui, T. Matsuda, M. Watanabe, C.H. Jin, Y. Sasaki, B. Mizuno, E. Ikenaga, K. Kakushima, P. Ahmet, T. Maruizumi, H. Nohira, T. Hattori, H. Iwai, J. Appl. Phys. 104, 093709 (2008)

    Article  Google Scholar 

  26. Z. Shen, T. Masuda, H. Takagishi, K. Ohdaira, T. Shimoda, Chem. Commun. 51, 4417 (2015)

    Article  CAS  Google Scholar 

  27. G. Lucovsky, R.J. Nemanich, J.C. Knights, Phys. Rev. B 19, 2064 (1979)

    Article  CAS  Google Scholar 

  28. U. Kroll, J. Meier, A. Shah, S. Mikhailov, J. Weber, J. Appl. Phys. 80, 4971 (1996)

    Article  CAS  Google Scholar 

  29. H. Shanks, C.J. Fang, L. Ley, M. Cardona, F.J. Demond, S. Kalbitzer, Phys. Status Solidi B 110, 43 (1980)

    Article  Google Scholar 

  30. E. Hengge, G. Bauer, Monatshefte fur Chemie, vol 106 (1975), p. 503

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shimoda, T. (2019). Liquid Vapor Deposition Using Liquid Silicon (LVD). In: Nanoliquid Processes for Electronic Devices. Springer, Singapore. https://doi.org/10.1007/978-981-13-2953-1_5

Download citation

Publish with us

Policies and ethics