Skip to main content

Device Fabrication by n-RP

  • Chapter
  • First Online:
Nanoliquid Processes for Electronic Devices
  • 249 Accesses

Abstract

In Chap. 14, a novel patterning method of oxide material named nano-rheology printing (n-RP) was introduced, which is a direct imprinting of the oxide precursor gel. It was proven that oxide gels have a viscoelastic property at some temperature range if solutions are properly designed and synthesized. We demonstrated fine oxide patterns with well-defined shape were able to be formed by thermal imprinting.

In this chapter, we report the adoption of the n-RP method as a fabrication tool of actual electronic devices. This corresponds to step 2 in Fig. 11.2 (Chap. 11 Guideline to oxide-based materials) which shows the developmental step to the printed electronics.

In Sect. 19.1, fabrication of two types of thin-film transistors (TFTs) is introduced: a FGT (ferroelectric gate-insulator transistor) and a switching TFT (normal TFT). The former TFT, which has a memory function due to ferroelectric nature of the gate insulator, was already introduced in Chap. 16, where the conventional fabrication method was used. Here, a FGT fabricated by the n-RP method is introduced. The channel lengths of both TFTs were 0.5 μm. This size has never been realized in the conventional PE (printed electronic) technologies.

In Sect. 19.2, a new TFT with improved structure and process is introduced. Because the structures of the TFTs described in Sect. 19.1 are very primitive and the used n-RP process for making them is not so robust, more complicated TFT structure and more sophisticated n-RP process are required inorder to apply the n-RP for practical devices and to ensure its process reliability, respectively.

As the imprinting method has an ability to make patterns with tens of nanometer, there would be much room to reduce the size of TFT. In fact, we demonstrated a reduced size TFT of which channel length is 200 nm in Sect. 19.3.

In Sect. 19.4, fabrication of an active-matrix backplane (AM-BP) for a display by using n-RP is introduced. We prepared a set of thermoplastic oxide gels sufficient for fabrication of the AM-BP and developed a suitable alignment system, giving a high alignment accuracy of less than 5 μm, for making the AM-BP. The operation of the transistors in the AM-BP was confirmed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T. Kaneda, D. Hirose, T. Miyasako, P.T. Tue, Y. Murakami, S. Kohara, J. Li, T. Mitani, E. Tokumitsu, T. Shimoda, J. Mater. Chem. C 2(1), 40 (2014)

    Article  CAS  Google Scholar 

  2. T. Miyasako, B.N.Q. Trinh, M. Onoue, T. Kaneda, P.T. Tue, E. Tokumitsu, T. Shimoda, Appl. Phys. Lett. 97, 173509 (2010)

    Article  Google Scholar 

  3. J. Li, H. Kameda, B.N.Q. Trinh, T. Miyasako, P.T. Tue, E. Tokumitsu, T. Mitani, T. Shimoda, Appl. Phys. Lett. 97, 102905 (2010)

    Article  Google Scholar 

  4. P.T. Tue, T. Miyasako, J. Li, H.T.C. Tu, S. Inoue, E. Tokumitsu, T. Shimoda, IEEE Trans. Electron Devices 60, 320 (2013)

    Article  CAS  Google Scholar 

  5. T. Shimoda, J. Li, P. T. Tue, H. Tsukada, Japan patent application no. 2013-194038, (2013)

    Google Scholar 

  6. A.C. Arias, S.E. Ready, R. Lujan, W.S. Wong, K.E. Paul, A. Salleo, M.L. Chabinyc, R. Apte, A. Robert, Y.W. Street, P. Liu, B. Ong, Appl. Phys. Lett. 85(15), 3304 (2004)

    Article  CAS  Google Scholar 

  7. K.E. Paul, W.S. Wong, S.E. Ready, R.A. Street, Appl. Phys. Lett. 83(10), 2070 (2003)

    Article  CAS  Google Scholar 

  8. T. Shimoda, Y. Matsuki, M. Furusawa, T. Aoki, I. Yudasaka, H. Tanaka, H. Iwasawa, D. Wang, M. Miyasaka, Y. Takeuchi, Nature 440(7085), 783 (2006)

    Article  CAS  Google Scholar 

  9. H. Sirringhaus, T. Kawase, R.H. Friend, T. Shimoda, M. Inbasekaran, W. Wu, E.P. Woo, Science 290(5499), 2123 (2000)

    Article  CAS  Google Scholar 

  10. J.Z. Wang, Z.H. Zheng, H.W. Li, W.T.S. Huck, H. Sirringhaus, Nat. Mater. 3(3), 171 (2004)

    Article  Google Scholar 

  11. P. Beecher, P. Servati, A. Rozhin, A. Colli, V. Scardaci, S. Pisana, T. Hasan, A.J. Flewitt, J. Robertson, G.W. Hsieh, F.M. Li, A. Nathan, A.C. Ferrari, W.I. Milne, J. Appl. Phys. 102(4), 043710 (2007)

    Article  Google Scholar 

  12. D.H. Lee, Y.J. Chang, G.S. Herman, C.H. Chang, Adv. Mater. 19(6), 843 (2007)

    Article  CAS  Google Scholar 

  13. Y. Nakamura, S. Matsumoto, S. Arae, Y. Sone, Y. Hirano, Ricoh Tech. Rep. 39, 07 (2014)

    Google Scholar 

  14. D. Kim, Y. Jeong, K. Song, S.-K. Park, G. Cao, J. Moon, Langmuir 25(18), 11149 (2009)

    Article  CAS  Google Scholar 

  15. M. Janeta, L. John, J. Ejfler, S. Szafert, RSC Adv. 5(88), 72340 (2015)

    Article  CAS  Google Scholar 

  16. J. Li, E. Tokumitsu, M. Koyano, T. Mitani, T. Shimoda, Appl. Phys. Lett. 101(13), 132104 (2012)

    Article  Google Scholar 

  17. K. Nagahara, D. Hirose, J. Li, J. Mihara, T. Shimoda, Ceram. Int. 42(6), 7730 (2016)

    Article  CAS  Google Scholar 

  18. P.T. Tue, K. Fukada, T. Shimoda, High-performance oxide thin film transistor fully fabricated by a direct rheology-imprinting. Appl. Phys. Lett. 111, 223504 (2017)

    Article  Google Scholar 

  19. Y. Murakami, J. Li, D. Hirose, S. Kohara, T. Shimoda, J. Mater. Chem. C 3(17), 4490 (2015)

    Article  CAS  Google Scholar 

  20. P.T. Tue, S. Inoue, Y. Takamura, T. Shimoda, Appl. Phys. A 122(6), 1 (2016)

    Article  CAS  Google Scholar 

  21. P.T. Tue, T. Miyasako, J. Li, H.T.C. Tu, S. Inoue, E. Tokumitsu, T. Shimoda, IEEE Trans. Electron Devices 60(1), 320 (2013)

    Article  CAS  Google Scholar 

  22. O. F Göbel, M. Nedelcu, U. Steiner, Adv. Funct. Mater. 17(7), 1131 (2007)

    Article  Google Scholar 

  23. R. Ganesan, J. Dumond, M.S.M. Saifullah, S.H. Lim, H. Hussain, H.Y. Low, ACS Nano 6(2), 1494 (2012)

    Article  CAS  Google Scholar 

  24. S.-H.K. Park, C.-S. Hwang, D.-H. Cho, S.M. Yoon, S. Yang, C. Byun, M. Ryu, J.-I. Lee, O.S. Kwon, W.-S. Cheong, H.Y. Chu, K.I. Cho, SID Symp. Dig. Tech. Pap. 40(1), 276 (2009)

    Article  CAS  Google Scholar 

  25. J. Li, P. Zhu, P. T. Tue, S. Inoue, T. Shimoda, submitted to the J. Mater. Chem. C

    Google Scholar 

  26. W. Xu, D. Liu, H. Wang, L. Ye, Q. Miao, J.-B. Xu, Appl. Phys. Lett. 104(17), 173504 (2014)

    Article  Google Scholar 

  27. S.Y. Lee, Trans. Electr. Electron. Mater. 16(3), 03 (2015)

    Article  Google Scholar 

  28. J.K. Jeong, H.W. Yang, J.H. Jeong, Y.-G. Mo, H.D. Kim, Appl. Phys. Lett. 93(12), 123508 (2008)

    Article  Google Scholar 

  29. Phan, Tue; Li, Jinwang; Shimoda, Tatsuya, “Nano-Rheology Printing of Sub-0.2 μm Channel Length Oxide Thin-Film Transistors” to be published in Nano Futures

    Google Scholar 

  30. P.T. Tue, S. Inoue, Y. Takamura, T. Shimoda, Combustion synthesized indium-tin-oxide (ITO) thin film for source/drain electrodes in all solution-processed oxide thin-film transistors. Appl. Phys. A 122(6), 1–8 (2016). https://doi.org/10.1007/s00339-016-0156-y

  31. Y. Murakami, J. Li, T. Shimoda, Highly conductive ruthenium oxide thin films by a low-temperature solution process and green laser annealing. Mater. Lett. 152, 121–124 (2015). https://doi.org/10.1016/j.matlet.2015.03.084

    Article  CAS  Google Scholar 

  32. C. R. Kagan, P. Andry, Thin film transistors, CRC Press, ISBN-10:0824709594, (2003)

    Google Scholar 

  33. P.T. Tue, K. Fukada, T. Shimoda, High-performance oxide thin film transistor fully fabricated by a direct rheology-imprinting. Appl. Phys. Lett. 111, 223504 (2017)

    Article  Google Scholar 

  34. D. Hirose, H. Koyama, K. Fukada, Y. Murakami, K. Satou, S. Inoue, T. Shimoda, All-solution-printed oxide thin-film transistors by direct thermal nanoimprinting for use in active-matrix arrays. Phys. Status Solidi A 214, 1–15 (2016). https://doi.org/10.1002/pssa.201600397.

    Article  Google Scholar 

  35. Y. Murakami, P. T. Tue, H. Tsukada, J. Li, T. Shimoda, Preparation of ruthenium metal and ruthenium oxide thin films by a low-temperature solution process, Proc. 20th Int. Disp. Workshops (IDW), (2013), pp. 1573–1576

    Google Scholar 

  36. D. Hirose, T. Shimoda, Evaluating the state of indium-tin oxide gels via estimation of their cohesive energy, Jpn. J. Appl. Phys. 53, 02BC01-1-02BC01-7 (2014)

    Article  Google Scholar 

  37. J.H. Park, W.J. Choi, S.S. Chae, J.Y. Oh, S.J. Lee, K.M. Song, H.K. Baik, Structural and electrical properties of solution-processed gallium-doped indium oxide thin-film transistors. Jpn. J. Appl. Phys. 50, 080202 (2011)

    Article  Google Scholar 

  38. D. Kim, C.Y. Koo, K. Song, Y. Jeong, J. Moon, Compositional influence on sol-gel-derived amorphous oxide semiconductor thin film transistors. Appl. Phys. Lett. 95(0), 252103 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shimoda, T. (2019). Device Fabrication by n-RP. In: Nanoliquid Processes for Electronic Devices. Springer, Singapore. https://doi.org/10.1007/978-981-13-2953-1_19

Download citation

Publish with us

Policies and ethics