Skip to main content

Thin-Film Oxide Transistor by Liquid Process (2): UV and Solvothermal Treatments for TFT Fabrication

  • Chapter
  • First Online:
Nanoliquid Processes for Electronic Devices
  • 286 Accesses

Abstract

As previously noted, this chapter describes the effect of UV (ultraviolet) irradiation on the pyrolysis of oxide precursors. In the pyrolysis process of oxide materials, heat is the usual energy source to decompose starting materials to the final products (solids). However, when UV light is used in a pyrolysis process together with heat, a tremendous effect is expected. In this chapter, we present experimental results concerning the UV irradiation under an oxygen atmosphere (UV/O3 treatment) or nitrogen atmosphere to semiconductor (in Sect. 17.1) and insulator (in Sect. 17.3) precursor films. Using this technology, we demonstrated the second example of an all-liquid-processed TFTin Sect. 17.2. The UV irradiation is not only effective for enhancing the properties of oxide films but also can lower the process temperature and be used as a patterning tool. When the UV irradiation technology is used in combination with solvothermal synthesis of solution, which was already described in Chap. 13, it enables the low-temperature solidification of oxide materials at less than 200 °C, as described in Sect. 17.3. In Sect. 17.4, the solidification mechanism of oxide precursor including UV irradiation treatment is fully studied in detail taking an InO cluster gel as a specimen. The cluster gel is an assembly of hybrid clusters, which has In–O cores coordinated with organic ligand molecules. As the structure and composition of cluster gel is clearly understood, this specimen is an ideal material for investigating the mechanism of UV irradiation. It is found that the UV reactions generate new carbon bonds having higher binding energy. The combination of thermal and UV treatments makes possible the growth of fine In–O crystals with reduced (2%) carbon elements. The UV irradiation is not restricted to a tool assisting in the pyrolysis process, but it can be used as a patterning tool of precursor gel films. After confirming the ability of UV light to pattern various materials, we fabricate TFTs only using UV light as a patterning method and demonstrated the operation of the TFT, as described in Sect. 17.5.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, H. Hosono, Nature 432(488) (2004)

    Article  CAS  Google Scholar 

  2. H. Yabuta, M. Sano, K. Abe, T. Aiba, T. Den, H. Kumomi, K. Nomura, T. Kamiya, H. Hosono, Appl. Phys. Lett. 89, 112123 (2006)

    Article  Google Scholar 

  3. K. Nomura, A. Takagi, T. Kamiya, H. Ohta, M. Hirano, H. Hosono, Jpn. J. Appl. Phys. Part 1. 45, 4303 (2006)

    Article  CAS  Google Scholar 

  4. T. Iwasaki, N. Itagaki, T. Den, H. Kumomi, K. Nomura, T. Kamiya, H. Hosono, Appl. Phys. Lett. 90, 242114 (2007)

    Article  Google Scholar 

  5. B. Yaglioglu, H.Y. Yeon, R. Beresford, D.C. Paine, Appl. Phys. Lett. 89, 062103 (2006)

    Article  Google Scholar 

  6. P. Arquinha, A. Pimente, A. Marques, L. Pereira, R. Martins, E. Fortunato, J. Non-Cryst. Solids 352, 1749 (2006)

    Article  Google Scholar 

  7. H.Q. Chiang, J.F. Wager, R.L. Hoffman, J. Jeong, D.A. Keszler, Appl. Phys. Lett. 86, 013503 (2005)

    Article  Google Scholar 

  8. W.B. Jackson, R.L. Hoffman, G.S. Herman, Appl. Phys. Lett. 87, 193503 (2005)

    Article  Google Scholar 

  9. P. Gorrn, M. Sander, J. Meyer, M. Kroger, E. Becker, H.-H. Johannes, W. Kowalsky, T. Riedl, Adv. Mater. 18, 738 (2006)

    Article  Google Scholar 

  10. R.L. Hoffman, Solid State Electron. 50, 784 (2006)

    Article  CAS  Google Scholar 

  11. T. Miyasako, M. Senoo, E. Tokumitsu, Appl. Phys. Lett. 86, 162902 (2005)

    Article  Google Scholar 

  12. M.S. Grover, P.A. Hersh, H.Q. Chiang, E.S. Kettenring, J.F. Wager, D.A. Keszler, J. Phys. D 40, 1335 (2007)

    Article  CAS  Google Scholar 

  13. K.J. Saji, M.K. Jayaraj, K. Namura, T. Kamiya, H. Hosono, J. Electrochem. Soc. 155, H390 (2008)

    Article  CAS  Google Scholar 

  14. T. Kamiya, K. Nomura, H. Hosono, Sci. Technol. Adv. Mater. 11, 044305 (2010)

    Article  Google Scholar 

  15. D. Kim, C.Y. Koo, K. Song, Y. Jeong, J. Moon, Appl. Phys. Lett. 95, 103501 (2009)

    Article  Google Scholar 

  16. Y.H. Kim, M.K. Han, J.I. Han, S.K. Park, IEEE Trans. Electron Devices 57, 1009 (2010)

    Article  CAS  Google Scholar 

  17. S. Jeong, Y.-G. Ha, J. Moon, A. Facchetti, T.J. Marks, Adv. Mater. 22, 1346 (2010)

    Article  CAS  Google Scholar 

  18. D. Kim, Y. Jeong, C. Y. Koo, K. Song, J. Moon, Jpn. J. Appl. Phys. Part 1. 49, 05EB06 (2010)

    Google Scholar 

  19. G.H. Kim, W.H. Jeong, H.J. Ki, Phys. Status Solidi A 207(7), 1677 (2010)

    Article  CAS  Google Scholar 

  20. Y. Wang, S.W. Liu, X.W. Sun, J.L. Zhao, G.K.L. Goh, Q.V. Vu, H.Y. Yu, J. Sol-Gel Sci. Technol. 55, 322 (2010)

    Article  CAS  Google Scholar 

  21. Y.-H. Kim, J.-S. Heo, T.-H. Kim, S. Park, M.-H. Yoon, J. Kim, M.S. Oh, G.-R. Yi, Y.-Y. Noh, S.K. Park, Nature 489, 128 (2012)

    Article  CAS  Google Scholar 

  22. P.K. Nayak, M.N. Hedhili, D. Cha, H.N. Alshareef, Appl. Phys. Lett. 100, 202106 (2012)

    Article  Google Scholar 

  23. K. Umeda, T. Miyasako, A. Sugiyama, A. Tanaka, M. Suzuki, E. Tokumitsu, T. Shimoda, J. Appl. Phys. 113, 1845209 (2013)

    Google Scholar 

  24. M.L. Hair, J. Non-Cryst. Solids 19, 299 (1975)

    Article  CAS  Google Scholar 

  25. M. Ivanda, S. Music, S. Popovic, M. Gotic, J. Mol. Struct. 480, 645 (1999)

    Article  Google Scholar 

  26. N. Nakayama, Y. Tsuchiya, S. Tamada, K. Kosuge, S. Nagata, K. Takahiro, and S. Yamaguch, Jpn. J. Appl. Phys. Part 2 32, L1465 (1993)

    Article  CAS  Google Scholar 

  27. R.O. Dillon, J.A. Woollam, V. Katkanant, Phys. Rev. B 29, 3482 (1984)

    Article  CAS  Google Scholar 

  28. A.C. Ferrari, J. Robertson, Phys. Rev. B 61, 14095 (2000)

    Article  CAS  Google Scholar 

  29. K. Nomura, T. Kamiya, H. Ohta, M. Hirano, H. Hosono, Appl. Phys. Lett. 93, 192107 (2008)

    Article  Google Scholar 

  30. J.S. Park, W.-J. Maeng, H.-S. Kim, J.-S. Park, Thin Solid Films 520, 1679 (2012)

    Article  CAS  Google Scholar 

  31. J.-Y. Kwon, D.-J. Lee, K.-B. Kim, Electron. Mater. Lett. 7, 1 (2011)

    Article  CAS  Google Scholar 

  32. E. Fortunato, P. Barquinha, R. Martins, Adv. Mater. 24, 2945 (2012)

    Article  CAS  Google Scholar 

  33. J. Livage, In Sol–Gel Optics Processing and Applications, Ed. L. C. Klein (Kluwer Academic, Dordrecht, 1994), p. 39

    Google Scholar 

  34. T. Miyasako, B.N.Q. Trinh, M. Onoue, T. Kaneda, P.T. Tue, E. Tokumitsu, T. Shimoda, Appl. Phys. Lett. 97, 173509 (2010)

    Article  Google Scholar 

  35. T. Miyasako, B.N.Q. Trinh, M. Onoue, T. Kaneda, P.T. Tue, E. Tokumitsu, T. Shimoda, Jpn. J. Appl. Phys. 50, 04DD09 (2011)

    Article  Google Scholar 

  36. T. Miyasako, M. Onoue, E. Tokumitsu, T. Shimoda, MRS Fall Meet. (2011), S2.8

    Google Scholar 

  37. K. Umeda, T. Miyasakol, A. Sugiyama, A. Tanaka, M. Suzuki, E. Tokumitsu, T. Shimoda, Jpn. J. Appl. Phys. 53, 02BE03 (2014)

    Article  Google Scholar 

  38. H. Kasper, Z. Anorg, Allg. Chem. 349, 113 (1967)

    Article  CAS  Google Scholar 

  39. N. Kimizuka, T. Mohri, J. Solid State Chem. 60, 382 (1985)

    Article  CAS  Google Scholar 

  40. M. Nakamura, N. Kimizuka, T. Mohri, J. Solid State Chem. 93, 298 (1991)

    Article  CAS  Google Scholar 

  41. M. Orita, M. Takeuchi, H. Sakai, H. Tanji, Jpn. J. Appl. Phys. 34, L1550 (1995)

    Article  CAS  Google Scholar 

  42. M. Orita, H. Sakai, M. Takeuchi, Y. Yamaguchi, Trans. Mater. Res. Soc. Jpn. 20, 573 (1996)

    Google Scholar 

  43. T. Moriga, D.D. Edwards, T.O. Mason, G.B. Palmer, K.R. Poeppelmeier, J.L. Schindler, C.R. Kannewurf, I. Nakabayashi, J. Am. Ceram. Soc. 81, 1310 (1998)

    Article  CAS  Google Scholar 

  44. T. Moriga, D.R. Kammler, T.O. Mason, G.B. Palmer, K.R. Poeppelmeier, J. Am. Ceram. Soc. 82, 2705 (1999)

    Article  CAS  Google Scholar 

  45. T. Kaneda et al., Rheology printing for metal-oxide patterns and devices. J. Mater. Chem. C 2, 40–49 (2014)

    Article  CAS  Google Scholar 

  46. Y. Murakami, J. Li, D. Hirose, S. Kohara, T. Shimoda, Solution processing of highly conductive ruthenium and ruthenium oxide thin films from ruthenium-amine complexes. J. Mater. Chem. C 3, 4490–4499 (2015)

    Article  CAS  Google Scholar 

  47. P. Tue et al., High-performance solution-processed ZrInZnO thin-film transistors. IEEE Trans. Electron Devices 60, 320–326 (2013)

    Article  CAS  Google Scholar 

  48. P. Tue, J. Li, T. Miyasako, S. Inoue, T. Shimoda, Low-temperature all-solution-derived amorphous oxide thin-film transistors. IEEE Electron Device Lett. 34, 1536–1538 (2013)

    Article  CAS  Google Scholar 

  49. M. Puchberger et al., Can the clusters Zr6O4(OH)4(OOCR)12 and [Zr6O4(OH)4(OOCR)12]2 be converted into each other? Eur. J. Inorg. Chem., 3283–3293 (2006)

    Article  Google Scholar 

  50. R. Mos et al., Synthesis, crystal structure and thermal decomposition of Zr6O4(OH)4(CH3CH2COO)12. J. Anal. Appl. Pyrolysis 97, 137–142 (2012)

    Article  CAS  Google Scholar 

  51. J. Li et al., Hybrid cluster precursors of the LaZrO insulator for transistors: properties of high-temperature-processed films and structures of solutions, gels, and solids. Sci. Rep. 6, 29682 (2016). https://doi.org/10.1038/srep29682

    Article  CAS  Google Scholar 

  52. D.J. Jacob, Introduction to Atmospheric Chemistry (Princeton University Press, Princeton, 1999), pp. 162–169

    Google Scholar 

  53. H.-J. Deiseroth, H.K. Müller-Buschbaum, Ein Beitrag zur Pyrochlorstruktur an La2Zr2O7. Z. Anorg. Allg. Chem. 375, 152–156 (1970)

    Article  CAS  Google Scholar 

  54. C. Loogn, J. Richardson, M. Ozawa, M. Kimura, Crystal structure and short-range oxygen defects in La-modified and Ndmodified ZrO2. J. Alloys Compd. 207, 174–177 (1994)

    Google Scholar 

  55. Y.M. Park, J. Daniel, M. Heeney, A. Salleo, Room-temperature fabrication of ultrathin oxide gate dielectrics for low-voltage operation of organic field-effect transistors. Adv. Mater. 23, 971–974 (2011)

    Article  CAS  Google Scholar 

  56. Y.M. Park, A. Desai, A. Salleo, Solution-processable zirconium oxide gate dielectrics for flexible organic field effect transistors operated at low voltages. Chem. Mater. 25, 2571–2579 (2013)

    Article  CAS  Google Scholar 

  57. W.-T. Park et al., Facile routes to improve performance of solution-processed amorphous metal oxide thin film transistors by water vapor annealing. ACS Appl. Mater. Interfaces 7, 3289–13294 (2015)

    Article  Google Scholar 

  58. D. Hirose, T. Shimoda, Evaluating the State of Indium-Tin Oxide gels via estimation of their cohesive energy. Jpn. J. Appl. Phys. 53, 02BC01-1-02BC01-7 (2014)

    Article  Google Scholar 

  59. S. Inoue, T.T. Phan, T. Hori, H. Koyama, T. Shimoda, Electrophoretic displays driven by all-oxide thin-film transistor backplanes fabricated using a solution process. Phys. Status Solidi A 212, 2133–2140 (2015)

    Article  CAS  Google Scholar 

  60. T. Kaneda, D. Hirose, T. Miyasako, P.T. Tue, Y. Murakami, S. Kohara, J. Li, T. Mitani, E. Tokumitu, T. Shimoda, Rheology printing for metal-oxide patterns and devices. J. Mater. Chem. C 2, 40–49 (2014)

    Article  CAS  Google Scholar 

  61. K. Umeda, T. Miyasako, A. Sugiyama, A. Tanaka, M. Suzuki, E. Tokumitsu, T. Shimoda, Impact of UV/O3 treatment on solution-processed amorphous InGaZnO4 thin film transistors. J. Appl. Phys. 113(184509), 1–6 (2013)

    Google Scholar 

  62. Y. Yoshimoto, J. Li, T. Shimoda, Fabrication of total solution-processed all-oxide TFT by UV irradiation-redissolving patterning. Asia-Pacific Conference of Transducers and Micro-Nano Technology 2016, Ishikawa, Japan, 5a-2 (2016)

    Google Scholar 

  63. Y. Yoshimoto, J. Li, and T. Shimoda, Solid conversion behaviors of indium oxide gel consisting of hybrid clusters with thermal- and/or ultraviolet-treatments for low temperature processing, Ceramics International (2018), Ceramics International 44(7), May 2018 doi.org/10.1016/j.ceramint.2018.01.120

    Article  CAS  Google Scholar 

  64. New Energy and Industrial Technology Development Organization (NEDO), Research for putting characteristic functional liquid materials into practical use, https://app5.infoc.nedo.go.jp/disclosure/SearchResultDetail. Accessed 3 December 2017. NEDO Annual Report, P14004 (2017)

  65. T. Proffen, S.J.L. Billinge, T. Egami, D. Louca, Structural analysis of complex materials using the atomic pair distribution function — A practical guide. Z. Krist. 218, 132–143 (2003)

    CAS  Google Scholar 

  66. P. Zhu, J. Li, P.T. Tue, S. Inoue and T. Shimoda, Hybrid cluster precursors of the LaZrO insulator for transistors: lowering the processing temperature, Scientific Reports, (2018) 8:5934 | DOI:10.1038/s41598-018-24292-4

    Google Scholar 

  67. L.V. Morozova, P.A. Tikhonov, V.B. Glushkova, Physicochemical investigation of the In2O3-HfO2 system in the indium oxide-rich region. Inorg. Mater. 27, 217–220 (1991)

    Google Scholar 

  68. M.S. Arnold, P. Avouris, Z.W. Pan, Z.L. Wang, Field-effect transistors based on single semiconducting oxide nanobelts. J. Phys. Chem. B. 107, 659–663 (2003)

    Article  CAS  Google Scholar 

  69. K. Umeda, T. Miyasako, A. Sugiyama, A. Tanaka, M. Suzuki, E. Tokumitsu, T. Shimoda, J. Appl. Phys. 113, 184509, 1–6 (2013)

    Google Scholar 

  70. Y. Yoshimoto, J. Li, T. Shimoda, Presented at APCOT2016, Asia-Pacific Conference of Transducers and Micro-Nano Technology 2016, Ishikawa, Japan, 5a-2 (2016)

    Google Scholar 

  71. Y. Yoshimoto, J. Li, and T. Shimoda, Presented at EM-NANO2017, 6th Int. Symp. on Organic and Inorganic Electronic Materials and Related Nanotechnologies, Fukui, Japan, PO1–25 (2017)

    Google Scholar 

  72. Y. Yoshimoto, J. Li, and T. Shimoda, Development of a direct patterning method for functional oxide thin films using ultraviolet irradiation and hybrid-cluster gels and its application to thin-film transistor fabrication, Applied Physics Express, Volume 11, Number 4, pp. 046501 (2018), DOI: 10.7567/APEX. 11.046501

    Google Scholar 

  73. L. Li, P. Zhu, D. Hirose, S. Kohara, T. Shimoda, Sci. Rep. 6, 29682 (2016)

    Article  CAS  Google Scholar 

  74. K. Nagahara, D. Hirose, J. Li, J. Mihara, T. Shimoda, Ceram. Int. 42, 7730 (2016)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shimoda, T. (2019). Thin-Film Oxide Transistor by Liquid Process (2): UV and Solvothermal Treatments for TFT Fabrication. In: Nanoliquid Processes for Electronic Devices. Springer, Singapore. https://doi.org/10.1007/978-981-13-2953-1_17

Download citation

Publish with us

Policies and ethics