Skip to main content

Novel Materials Proper to Liquid Process

  • Chapter
  • First Online:
Nanoliquid Processes for Electronic Devices
  • 261 Accesses

Abstract

In this chapter, novel oxide materials, which are special for liquid processes, are introduced. In the liquid process, a final solid oxide is formed by the decomposition of a metal–organic compound and by the subsequent growth of metal oxide, which proceed simultaneously in a pyrolysis reaction. Because of their nature, the organic elements remain until a certain stage during the conversion process from liquid to solid. Carbon atoms thus remaining in the system strongly affect the properties of the solid oxide formed and also affect the gel-to-solid conversion. The complete elimination of carbon from the system generally requires a temperature greater than 1000 °C. Accordingly, carbon should remain in the system when annealing is conducted at 500 °C or 600 °C. In most cases, the remaining carbon tends to degrade the properties of the formed solid. In the case of an ITO film, for example, the resistivity of an ITO film prepared by the vacuum process is typically 1 × 10−4 Ωcm, whereas it increases to 1 × 10−3 Ωcm in the case of a film prepared using the liquid process. This degradation is regrettably common in liquid-processed oxide materials and has been a large drawback of the liquid process compared to the vacuum process.

However, exceptions always exist. That is also true in oxide materials prepared by the liquid process. In some cases, the liquid process gives thin films superior to those prepared by the vacuum process. One example is described in Sects. 12.1 and 12.2, “Low-temperature formation of perovskite PZT.” By controlling the decomposition of carbon, we demonstrated the direct formation of perovskite PZT bulk and films at low temperatures, which has not been accomplished by the vacuum process. Moreover, the effect of carbon decomposition on materials led to novel materials. One example is introduced in Sects. 15.1 and 15.2. A material with a high relative dielectric constant εr was obtained by the liquid process. The material is BiNbO, which has a pyrochlore crystal structure as a main phase and has never been previously reported in this ternary system.

Because oxide materials prepared by the liquid process always contain some amount of carbon, they can reasonably be called metal-oxide carbides. Therefore, they are essentially a novel substance from a compositional viewpoint. Sometimes novel materials are created because of remaining carbon. The example is introduced in Sect. 15.3, where p-type semiconductors were created, most likely by the effects of remaining carbon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.A. Subramanian, J.C. Calabrese, Mater. Res. Bull. 28, 523 (1993)

    Article  CAS  Google Scholar 

  2. E.T. Keve, A.C. Skapski, J. Solid State Chem. 8, 159 (1973)

    Article  CAS  Google Scholar 

  3. Y. Maruyama, C. Izawa, T. Watanabe, ISRN Mater. Sci. 2012, 170362 (2012)

    Article  Google Scholar 

  4. D. Zhou, H. Wang, X. Yao, X. Wei, F. Xiang, L. Pang, Appl. Phys.Lett. 90, 172910 (2007)

    Article  Google Scholar 

  5. C. Yang, J. Mater. Sci. Lett. 18, 805 (1999)

    Article  CAS  Google Scholar 

  6. E.S. Kim, W. Choi, J. Eur. Ceram. Soc. 26, 1761 (2006)

    Article  CAS  Google Scholar 

  7. H. Lim, Y.-J. Oh, Jpn. J. Appl. Phys. 45, 5865 (2006)

    Article  CAS  Google Scholar 

  8. C.-M. Cheng, S.-H. Lo, C.-F. Yang, Ceram. Int. 26, 113 (2000)

    Article  CAS  Google Scholar 

  9. S. Tahara, A. Shimada, N. Kumada, Y. Sugahara, J. Solid State Chem. 180, 2517 (2007)

    Article  CAS  Google Scholar 

  10. T. Takenaka, K. Komura, K. Sakata, Jpn. J. Appl. Phys. 35, 5080 (1996)

    Article  CAS  Google Scholar 

  11. K.-H. Cho, C.-H. Choi, K.P. Hong, J.-Y. Choi, Y.H. Jeong, S. Nahm, C.-Y. Kang, S.-J. Yoon, H.-J. Lee, IEEE Electron Device Lett. 29, 684 (2008)

    Article  CAS  Google Scholar 

  12. D. Zhou, H. Wang, X. Yao, J. Am. Ceram. Soc. 90, 327 (2007)

    Article  CAS  Google Scholar 

  13. M. Valant, D. Suvorov, J. Am. Ceram. Soc. 86, 939 (2003)

    Article  CAS  Google Scholar 

  14. H. Du, X. Yao, J. Mater. Sci. 42, 979 (2007)

    Article  CAS  Google Scholar 

  15. H. Du, X. Yao, H. Wang, Appl. Phys. Lett. 88, 212901 (2006)

    Article  Google Scholar 

  16. Y. Hu, C.-L. Huang, Ceram. Int. 30, 2241 (2004)

    Article  CAS  Google Scholar 

  17. S. Kamba, V. Porokhonskyy, A. Pashkin, V. Bovtun, J. Petzelt, J. Nino, S. Trolier-McKinstry, M.T. Lanagan, C.A. Randall, Phys. Rev. B 66, 054106 (2002)

    Article  Google Scholar 

  18. M. Nakajima, R. Ikariyama, P.S.S.R. Krishnan, T. Yamada, H. Funakubo, Appl. Phys. Lett. 104, 022908 (2014)

    Article  Google Scholar 

  19. M. Valant, P.K. Davies, J. Am. Ceram. Soc. 83, 147 (2000)

    Article  CAS  Google Scholar 

  20. Q. Wang, H. Wang, X. Yao, J. Appl. Phys. 101, 104116 (2007)

    Article  Google Scholar 

  21. M. Onoue, T. Miyasako, E. Tokumitsu, T. Shimoda, IEICE Electron. Express 11, 20140651 (2014)

    Article  Google Scholar 

  22. S. Inoue, T. Ariga, S. Matsumoto, M. Onoue, T. Miyasako, E. Tokumitsu, N. Chinone, Y. Cho, T. Shimoda, J. Appl. Phys. 116, 154103 (2014)

    Article  Google Scholar 

  23. U. Pirnat, M. Valant, B. Jancar, D. Suvorov, Chem. Mater. 17, 5155 (2005)

    Article  CAS  Google Scholar 

  24. M. Valant, B. Jancar, U. Pirnat, D. Suvorov, J. Eur. Ceram. Soc. 25, 2829 (2005)

    Article  CAS  Google Scholar 

  25. J. Lu, D.O. Klenov, S. Stemmer, Appl. Phys. Lett. 84, 957 (2004)

    Article  CAS  Google Scholar 

  26. H. Kagata, T. Inoue, J. Kato, I. Kameyama, Jpn. J. Appl. Phys., Part 1(31), 3152 (1992)

    Article  Google Scholar 

  27. S. Butee, A.J. Kulkarni, O. Prakash, R.P.R.C. Aiyar, K. Sudheendran, K.C.J. Raju, J. Alloys Compd. 492, 351 (2010)

    Article  CAS  Google Scholar 

  28. N. Wang, M.Y. Zhao, W. Li, Z.W. Yin, Ceram. Int. 30, 1017 (2004)

    Article  CAS  Google Scholar 

  29. M.H. Weng, C.L. Huang, J. Mater. Sci. Lett. 19, 375 (2000)

    Article  CAS  Google Scholar 

  30. R.D. Shannon, Acta Crystallogr. Sect. A 32, 751 (1976)

    Article  Google Scholar 

  31. T. Ariga, S. Inoue, S. Matsumoto, M. Onoue, T. Miyasako, E. Tokumitsu, T. Shimoda, Jpn. J. Appl. Phys. 54, 091501 (2015)

    Article  Google Scholar 

  32. G. Zhang, J. Yang, S. Zhang, Q. Xiong, B. Huang, J. Wang, W. Gong, J. Hazard. Mater. 172, 986 (2009)

    Article  CAS  Google Scholar 

  33. R.L. Thayer, C.A. Randall, S. Trolier-McKinstry, J. Appl. Phys. 94, 1941 (2003)

    Article  CAS  Google Scholar 

  34. W. Ren, S. Trolier-McKinstry, C.A. Randall, T.R. Shrout, J. Appl. Phys. 89, 767 (2001)

    Article  CAS  Google Scholar 

  35. N. Wang, M.-Y. Zhao, Z.-W. Yin, W. Li, Mater. Lett. 57, 4009 (2003)

    Article  CAS  Google Scholar 

  36. C. Avis, J. Jang, J. Mater. Chem. 21, 10649 (2011)

    Article  CAS  Google Scholar 

  37. K. Jiang, J.T. Anderson, K. Hoshino, D. Li, J.F. Wager, D.A. Keszler, Chem. Mater. 23, 945 (2011)

    Article  CAS  Google Scholar 

  38. S. Jeong, Y.-G. Ha, J. Moon, A. Facchetti, T.J. Marks, Adv. Mater. 22, 1346 (2010)

    Article  CAS  Google Scholar 

  39. K.K. Banger, Y. Yamashita, K. Mori, R.L. Peterson, T. Leedham, J. Rickard, H. Sirringhaus, Nat. Mater. 10, 45 (2011)

    Article  CAS  Google Scholar 

  40. M.-G. Kim, M.G. Kanatzidis, A. Facchetti, T.J. Marks, Nat. Mater. 10, 382 (2011)

    Article  CAS  Google Scholar 

  41. M.-G. Kim, H.S. Kim, Y.-G. Ha, J. He, M.G. Kanatzidis, A. Facchetti, T.J. Marks, J. Am. Chem. Soc. 132, 10352 (2010)

    Article  CAS  Google Scholar 

  42. Z.L. Mensinger, J.T. Gatlin, S.T. Meyers, L.N. Zakharov, D.A. Keszler, D.W. Johnson, Angew. Chem. Int. Ed. 47, 9484 (2008)

    Article  CAS  Google Scholar 

  43. S. Narushima, H. Mizoguchi, K. Shimizu, K. Ueda, H. Ohta, M. Hirano, T. Kamiya, H. Hosono, Adv. Mater. 15, 1409 (2003)

    Article  CAS  Google Scholar 

  44. T. Kamiya, S. Narushima, H. Mizoguchi, K. Shimizu, K. Ueda, H. Ohta, M. Hirano, H. Hosono, Adv. Funct. Mater. 15, 968 (2005)

    Article  CAS  Google Scholar 

  45. S.H. Kim, J.A. Cianfrone, P. Sadik, K.-W. Kim, M. Ivill, D.P. Norton, Appl. Phys. Lett. 107, 103538 (2010)

    Google Scholar 

  46. K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, H. Hosono, Nature 432, 488 (2004)

    Article  CAS  Google Scholar 

  47. K. Hayashi, S. Matsuishi, T. Kamiya, M. Hirano, H. Hosono, Nature 419, 462 (2002)

    Article  CAS  Google Scholar 

  48. S. Matsuishi, Y. Toda, M.M.K. Hayashi, T. Kamiya, M. Hirano, I. Tanaka, H. Hosono, Science 301, 626 (2003)

    Article  CAS  Google Scholar 

  49. K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano, H. Hosono, Science 300, 1269 (2003)

    Article  CAS  Google Scholar 

  50. H. Kawazoe, M. Yasukawa, H. Hyodo, M. Kurita, H. Yanagi, H. Hosono, Nature 389, 939–942 (1997)

    Article  CAS  Google Scholar 

  51. H. Kawazoe, H. Yanagi, K. Ueda, H. Hosono, MRS Bull. 25, 28 (2000)

    Article  CAS  Google Scholar 

  52. Y. Ogo, H. Hiramatsu, K. Nomura, H. Yanagi, T. Kamiya, M. Kimura, M. Hirano, H. Hosono, Phys. Status Solidi A 206, 2187 (2009)

    Article  CAS  Google Scholar 

  53. H. Mizoguchi, M. Hirano, S. Fujitsu, T. Takeuchi, K. Ueda, H. Hosono, Appl. Phys. Lett. 80, 1207 (2002)

    Article  CAS  Google Scholar 

  54. J. Li, T. Kaneda, E. Tokumitsu, M. Koyano, T. Mitani, T. Shimoda, Appl. Phys. Lett. 101, 052102 (2012)

    Article  Google Scholar 

  55. J. Li, E. Tokumitsu, M. Koyano, T. Mitani, T. Shimoda, Appl. Phys. Lett. 101, 132104 (2012)

    Article  Google Scholar 

  56. P. Khalifah, K.D. Nelson, R. Jin, Z.Q. Mao, Y. Liu, Q. Huang, X.P.A. Gao, A.P. Ramirez, R.J. Cava, Nature 411, 669 (2001)

    Article  CAS  Google Scholar 

  57. M. Dekkers, G. Rijnders, D.H.A. Blank, Appl. Phys. Lett. 90, 021903 (2007)

    Article  Google Scholar 

  58. Y. Maeno, H. Hashimoto, K. Yoshida, S. Nishizaki, T. Fujita, J.G. Bednorz, F. Lichtenberg, Nature 372, 532 (1994)

    Article  CAS  Google Scholar 

  59. P. Khalifah, R. Osborn, Q. Huang, H.W. Zandbergen, R. Jin, Y. Liu, D. Mandrus, R.J. Cava, Science 297, 2237 (2002)

    Article  CAS  Google Scholar 

  60. H. Hosono, T. Kamiya, Ceramics 38, 825 (2003)

    CAS  Google Scholar 

  61. J. Park, K.H. Kim, H.-J. Noh, S.-J. Oh, J.-H. Park, H.-J. Lin, C.-T. Chen, Phys. Rev. B 69, 165120 (2004)

    Article  Google Scholar 

  62. P.A. Cox, J.B. Goodenough, P.J. Tavener, D. Telles, R.G. Egdell, J. Solid State Chem. 62, 360 (1986)

    Article  CAS  Google Scholar 

  63. M.F. Sunding, K. Hadidi, S. Diplas, O.M. Løvvik, T.E. Norby, A.E. Gunnæs, J. Electron Spectrosc. Relat. Phenom. 184, 399 (2011)

    Article  CAS  Google Scholar 

  64. P. Khalifah, R.J. Cava, Phys. Rev. B 64, 085111 (2001)

    Article  Google Scholar 

  65. R.J. Cava, Dalton Trans. 36, 2979 (2004)

    Article  Google Scholar 

  66. J.S. Lee, S.J. Moon, T.W. Noh, T. Takeda, R. Kanno, S. Yoshii, M. Sato, Phys. Rev. B 72, 035124 (2005)

    Article  Google Scholar 

  67. S.J. Moon, H. Jin, K.W. Kim, W.S. Choi, Y.S. Lee, J. Yu, G. Cao, A. Sumi, H. Funakubo, C. Bernhard, T.W. Noh, Phys. Rev. Lett. 101, 226402 (2008)

    Article  CAS  Google Scholar 

  68. M. Tachibana, Y. Kohama, T. Shimoyama, A. Harada, T. Taniyama, M. Itoh, H. Kawaji, T. Atake, Phys. Rev. B 73, 193107 (2006)

    Article  Google Scholar 

  69. T. Fujita, K. Tsuchida, Y. Yasui, Y. Kobayashi, M. Sato, Phys. B 329–333, 743 (2003)

    Article  Google Scholar 

  70. H. Hiramatsu, K. Ueda, H. Ohta, M. Hirano, M. Kikuchi, H. Yanagi, T. Kamiya, H. Hosono, Appl. Phys. Lett. 91, 012104 (2007)

    Article  Google Scholar 

  71. P.A. Lee, T.V. Ramakrishnan, Rev. Mod. Phys. 57, 287–337 (1985)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shimoda, T. (2019). Novel Materials Proper to Liquid Process. In: Nanoliquid Processes for Electronic Devices. Springer, Singapore. https://doi.org/10.1007/978-981-13-2953-1_15

Download citation

Publish with us

Policies and ethics