Skip to main content

Direct Imprinting of Gel (Nano-rheology Printing)

  • Chapter
  • First Online:
  • 258 Accesses

Abstract

Here, a new printing method is proposed: direct printing of metal-oxide patterns with well-defined shapes. This printing utilizes a viscoelastic transformation of precursor gels when imprinted; they soften at a certain temperature during thermal imprinting so that the gels can be rheologically imprinted. The imprinted patterns exhibit very little shrinkage after post-annealing, thereby achieving high shape fidelity to the mold together with metal-oxide condensation at imprinting. The viscoelastic transformation and metal-oxide condensation at imprinting constitute the basis of this printing method, which is closely related to the cluster structure of the precursor gel. This method has worked for patterns with dimensions as small as several tens of nanometers. Because this method utilizes the rheological property of an oxide precursor gel and is good at nano-sized patterning, we named it “nano-rheology printing” (n-RP).

In Sect. 14.1, the features of the n-RP process are introduced, with indium tin oxide, InSnO (ITO), taken as an example. The relationship between the n-RP parameters and the structure of the ITO precursor gel are clarified through multiple analyses. We stress that the ITO precursor gel remains a physical gel consisting of nanoclusters that do not chemically bind to each other. To confirm this fact, a unique analytical method, which can identify the ITO gel as a physical one, is introduced in Sect. 14.2. In Sects. 14.3 and 14.4, n-RP methods using a ZrO gel and an RuLaO gel are described. With respect to device fabrication using the n-RP method, TFTs with a short-channel length and active-matrix devices for displays are reported in Chap. 19.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. T. Kaneda, D. Hirose, T. Miyasako, P.T. Tue, Y. Murakami, S. Kohara, J. Li, T. Mitani, E. Tokumitsu, T. Shimoda, J. Mater.Chem. C2, 40–49 (2014)

    Google Scholar 

  2. M. Li, H. Tan, L. Chen, J. Wang, S.Y. Chou, J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct. 21, 660 (2003)

    Article  CAS  Google Scholar 

  3. K.-J. Byeonand, H. Lee, Eur. Phys. J. Appl. Phys. 59, 10001 (2012)

    Article  Google Scholar 

  4. M. Isshikia, Y. Ohishi, S. Goto, K. Takeshita, T. Ishikawa, Nucl. Instrum. Methods Phys. Res., Sect. A 663, 467 (2001)

    Google Scholar 

  5. S. Kohara, M. Itou, K. Suzuya, Y. Inamura, Y. Sakurai, Y. Ohishi, M. Takata, J. Phys. Condens. Matter 19, 506101 (2007)

    Article  Google Scholar 

  6. http://www.isis2.isis.rl.ac.uk/disordered/database/DBMain.htm

  7. O.F. G¨obel, M. Nedelcu, U. Steiner, Adv. Funct. Mater. 17, 1131 (2007)

    Article  Google Scholar 

  8. R. Ganesan, J. Dumond, M.S.M. Saifullah, S.H. Lim, H. Hussain, H.Y. Low, ACS Nano 6, 1494 (2012)

    Article  CAS  Google Scholar 

  9. S.H. Lim, M.S.M. Saifullah, H. Hussain, W.W. Loh, H.Y. Low, Nanotechnology 21, 285303 (2010)

    Article  Google Scholar 

  10. K.-M. Yoon, K.-Y. Yang, H. Lee, Thin Solid Films 518, 126 (2009)

    Article  CAS  Google Scholar 

  11. R.W. Schwartz, T. Schneller, R. Waser, C. R. Chim. 7, 433 (2004)

    Article  CAS  Google Scholar 

  12. L. Fei, M. Naeemi, G. Zou, H. Luo, Chem. Rec. 13, 85 (2013)

    Article  CAS  Google Scholar 

  13. T.P. Niesen, M.R. De Guire, J. Electroceram. 6, 169 (2001)

    Article  CAS  Google Scholar 

  14. D. Hirose, T. Shimoda, Jpn. J. Appl. Phys. 53, 02BC01-1–02BC01-7 (2014)

    Article  Google Scholar 

  15. D.B. Hough, L.R. White, Adv. Colloid Interf. Sci. 14, 3 (1980)

    Article  CAS  Google Scholar 

  16. C.J. Van Oss, R.J. Good, M.K. Chaudhury, Langmuir 4, 884 (1988)

    Article  Google Scholar 

  17. D. Gallagher, F. Scanlan, R. Houriet, H.J. Mathieu, T.A. Ring, J. Mater. Res. 8, 3135 (1993)

    Article  CAS  Google Scholar 

  18. A.L. Cauchy, Bull. Sci. Math. 14, 6 (1830)

    Google Scholar 

  19. J. Labeguerie, P. Gredin, J. Marrot, A. de Kozak, J. Solid State Chem. 178, 3197 (2005)

    Article  CAS  Google Scholar 

  20. J.N. Israelachvili, Intermolecular and Surface Forces, 2nd edn. (Academic, London, 1992), p. 202

    Google Scholar 

  21. V.A. Parsegian, B.W. Ninham, Nature 224, 1197 (1969)

    Article  CAS  Google Scholar 

  22. L. Bergström, Adv. Colloid Interf. Sci. 70, 125 (1997)

    Article  Google Scholar 

  23. T. Masuda, Y. Matsuki, T. Shimoda, J. Colloid Interface Sci. 340, 298 (2009)

    Article  CAS  Google Scholar 

  24. Z. Li, R.F. Giese, C.J. van Oss, J. Yvon, J. Cases, J. Colloid Interface Sci. 156, 279 (1993)

    Article  CAS  Google Scholar 

  25. C. Della Volpe, D. Maniglio, M. Brugnara, S. Siboni, M. Morra, J. Colloid Interface Sci. 271, 434 (2004)

    Article  CAS  Google Scholar 

  26. D. Hirose, J. Li, Y. Murakami, S. Kohara and T. Shimoda, Origin of the thermal plasticity property of zirconium oxide gels for use in direct thermal nanoimprinting. Ceram. Int. 44(15). https://doi.org/10.1016/j.ceramint.2018.06.026

    Article  CAS  Google Scholar 

  27. A.K. Jonsson, G.A. Niklasson, M. Veszelei, Electrical properties of ZrO2 thin films. Thin Solid Films 402, 242–247 (2002)

    Article  CAS  Google Scholar 

  28. A. Javey et al., High-κ dielectrics for advanced carbon-nanotube transistors and logic gates. Nat. Mater. 1, 241–246 (2002)

    Article  CAS  Google Scholar 

  29. J.H. Park et al., Boron-doped Peroxo-zirconium oxide dielectric for high-performance, low-temperature, solution-processed indium oxide thin-film transistor. ACS Appl. Mater. Interfaces 5, 410–417 (2013)

    Article  CAS  Google Scholar 

  30. Y.M. Park, A. Desai, A. Salleo, L. Jimison, Solution-Processable zirconium oxide gate dielectrics for flexible organic field effect transistors operated at low voltages. Chem. Mater. 25, 2571–2579 (2013)

    Article  CAS  Google Scholar 

  31. J.H. Park et al., Boron-doped Peroxo-zirconium oxide dielectric for high-performance, low-temperature, solution-processed indium oxide thin-film transistor. ACS Appl. Mater. Interfaces 5, 8067–8075 (2013)

    Article  CAS  Google Scholar 

  32. L. Xifeng, X. Enlong, Z. Jianhua, Low-temperature solution-processed zirconium oxide gate insulators for thin-film transistors. IEEE Trans. Electron Devices 60, 3413–3416 (2013)

    Article  Google Scholar 

  33. Zirkl, B. M. et al. Low-voltage organic thin-film transistors with high- k nanocomposite gate dielectrics for flexible electronics and Optothermal sensors. 2241–2245 (2007)

    Google Scholar 

  34. T. Kaneda et al., Rheology printing for metal-oxide patterns and devices. J. Mater. Chem. C2, 40 (2014)

    Google Scholar 

  35. P. Khalifah, R. Osborn, Q. Huang, H.W. Zandbergen, R. Jin, Y. Liu, D. Mandrus, R.J. Cava, Orbital Ordering Transition in La4Ru2O10. Science 297, 2237–2240 (2002)

    Article  CAS  Google Scholar 

  36. J. Li, T. Kaneda, E. Tokumitsu, M. Koyano, T. Mitani, T. Shimoda, P-type conductive amorphous oxides of transition metals from solution processing. Appl. Phys. Lett. 101, 052102-1–052102-5 (2012)

    Google Scholar 

  37. K. Nagahara, D. Hirose, J. Li, J. Mihara, T. Shimoda, Ceram. Int. 42(6), 7730 (2016)

    Article  CAS  Google Scholar 

  38. T. Proffen, S.J.L. Billinge, T. Egami, D. Louca, Structural analysis of complex materials using the atomic pair distribution function — A practical guide. Z. Krist. 218, 132–143 (2003)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shimoda, T. (2019). Direct Imprinting of Gel (Nano-rheology Printing). In: Nanoliquid Processes for Electronic Devices. Springer, Singapore. https://doi.org/10.1007/978-981-13-2953-1_14

Download citation

Publish with us

Policies and ethics