Skip to main content

Mechanisms for Non-eosinophilic Asthma

  • Chapter
  • First Online:
Book cover Advances in Asthma

Abstract

Asthma can be broadly subdivided into eosinophilic or non-eosinophilic phenotypes based on the inflammatory cellular patterns seen in sputum, blood, and airway tissue. However, the most appropriate cutoff value of non-eosinophilic asthma that identifies individuals in whom neutrophils are activated and contributing to the pathogenic processes in asthma is not elucidated compared to eosinophilic asthma. Major clinical phenotypes of non-eosinophilic asthma include those patients with neutrophilic, paucigranulocytic, and late-onset obesity-related asthma. The mechanism of non-eosinophilic asthma is very complicated and has not been investigated in detail; nonetheless many potential molecular pathways may be implicated in the development of non-eosinophilic asthma.

The cause of airway neutrophilia in asthma is possibly due to augmented innate immunity, IL-23-Th17-IL-17-ILC3 pathway-mediated neutrophilic inflammation, delayed apoptosis of neutrophils caused by epithelial cell-derived cytokines and growth factors, corticosteroid treatment inducing impaired apoptosis of neutrophils, and ineffective macrophage efferocytosis of neutrophils, upregulated NLRP-3 inflammasome and p38/MAPK activity, and reduced lipoxin levels, as well as an altered airway microbiome. Non-eosinophilic inflammation is associated with an impaired therapeutic response to inhaled corticosteroids and usually results in severe uncontrolled asthma. Better understanding of the mechanisms of non-eosinophilic inflammation in asthma will identify new approaches for the treatment of severe non-eosinophilic asthma patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CXCL1:

Chemokine ligand 1

CXCR2:

Chemokine receptor 2

Cys-LTs:

Cysteinyl leukotrienes

ECP:

Eosinophil cationic protein

EPO:

Eosinophil peroxidase

IFN:

Interferon

ILC:

Innate lymphoid cell

LT:

Leukotriene

MBP:

Major basic protein

MMP-9:

Matrix metalloproteinase-9

NK cell:

Natural killer cell

NKT cell:

Natural killer T cell

PGD2:

Prostaglandin D2

ROS:

Reactive oxygen species

TGF-β:

Transforming growth factor-β

TNF-α:

Tumor necrosis factor-α

TSLP:

Thymic stromal lymphopoietin

References

  1. Arron J, Choy D, Laviolette M, Kelsen S, Hatab A, Leigh R. Disconnect between sputum neutrophils and other measures of airway inflammation in asthma. Eur Respir J. 2014;43:627–9.

    Article  Google Scholar 

  2. Hastie AT, Moore WC, Li H, Rector BM, Ortega VE, Pascual RM, National Heart, Lung, and Blood Institute’s Severe Asthma Research Program, et al. Biomarker surrogates do not accurately predict sputum eosinophil and neutrophil percentages in asthmatic subjects. J Allergy Clin Immunol. 2013;132:72–80.

    Article  CAS  Google Scholar 

  3. Thomson NC, Chaudhuri R, Heaney L, Bucknall C, Niven R, Brightling C. Clinical outcomes and inflammatory biomarkers in current smokers and exsmokers with severe asthma. J Allergy Clin Immunol. 2013;131:1008–16.

    Article  CAS  Google Scholar 

  4. Desai D, Newby C, Symon F, Haldar P, Shah S, Gupta S. Elevated sputum interleukin-5 and submucosal eosinophilia in obese individuals with severe asthma. Am J Respir Crit Care Med. 2013;188:657–63.

    Article  CAS  Google Scholar 

  5. McGrath K, Icitovic N, Boushey H, Lazarus S, Sutherland E, Chinchilli V. A large subgroup of mild-to-moderate asthma is persistently noneosinophilic. Am J Respir Crit Care Med. 2012;185:612–9.

    Article  CAS  Google Scholar 

  6. Wood L, Baines K, Fu J, Scott H, Gibson P. The neutrophilic inflammatory phenotype is associated with systemic inflammation in asthma. Chest. 2012;142:86–93.

    Article  CAS  Google Scholar 

  7. Baines K, Simpson J, Wood L, Scott R, Fibbens N, Powell H. Sputum gene expression signature of 6 biomarkers discriminates asthma inflammatory phenotypes. J Allergy Clin Immunol. 2014;133:997–1007.

    Article  CAS  Google Scholar 

  8. Simpson J, Phipps S, Baines K, Oreo K, Gunawardhana L, Gibson P. Elevated expression of the NLRP3 inflammasome in neutrophilic asthma. Eur Respir J. 2014;43:1067–76.

    Article  Google Scholar 

  9. Gao P, Gibson P, Baines K, Yang I, Upham J, Reynolds P. Anti-inflammatory deficiencies in neutrophilic asthma: reduced galectin-3 and IL-1RA/IL-1β. Respir Res. 2015;16:5.

    Article  CAS  Google Scholar 

  10. Simpson J, Gibson P, Yang I, Upham J, James A, Reynolds P, et al. Altered sputum granzyme B and granzyme B/proteinase inhibitor-9 in patients with noneosinophilic asthma. Respirology. 2014;19:280–7.

    Article  Google Scholar 

  11. Baines K, Simpson J, Bowden N, Scott R, Gibson P. Differential gene expression and cytokine production from neutrophils in asthma phenotypes. Eur Respir J. 2010;35:522–31.

    Article  CAS  Google Scholar 

  12. Fu J, Baines K, Wood L, Gibson P. Systemic inflammation is associated with differential gene expression and airway neutrophilia in asthma. OMICS. 2013;17:187–99.

    Article  CAS  Google Scholar 

  13. Cosmi L, Liotta F, Annunziato F. Th17 regulating lower airway disease. Curr Opin Allergy Clin Immunol. 2016;16:1–6.

    Article  CAS  Google Scholar 

  14. Ricciardolo FLM, Sorbello V, Folino A, Gallo F, Massaglia GM, Favatà G, et al. Identification of IL-17F/frequent exacerbator endotype in asthma. J Allergy Clin Immunol. 2017;140:395–406.

    Article  CAS  Google Scholar 

  15. McKinley L, Alcorn JF, Peterson A, Dupont RB, Kapadia S, Logar A, et al. TH17 cells mediate steroid-resistant airway inflammation and airway hyperresponsiveness in mice. J Immunol. 2008;181:4089–97.

    Article  CAS  Google Scholar 

  16. Kim RY, Pinkerton JW, Essilfie AT, Robertson AAB, Baines KJ, Brown AC, et al. Role for NLRP3 inflammasome-mediated, IL-1β-dependent responses in severe, steroid-resistant asthma. Am J Respir Crit Care Med. 2017;196:283–97.

    Article  CAS  Google Scholar 

  17. Kuo CS, Pavlidis S, Loza M, Baribaud F, Rowe A, Pandis I, et al. U-BIOPRED Study group. T-helper cell type 2 (Th2) and non-Th2 molecular phenotypes of asthma using sputum transcriptomics in U-BIOPRED. Eur Respir J. 2017;49:1602135. https://doi.org/10.1183/13993003.02135-2016.

    Article  CAS  PubMed  Google Scholar 

  18. Simpson JL, Gibson PG, Yang IA, Upham J, James A, Reynolds PN, AMAZES Study Research Group, et al. Impaired macrophage phagocytosis in non-eosinophilic asthma. Clin Exp Allergy. 2013;43:29–35.

    Article  CAS  Google Scholar 

  19. Chung KF. p38 mitogen-activated protein kinase pathways in asthma and COPD. Chest. 2011;139:1470–9.

    Article  CAS  Google Scholar 

  20. Duvall MG, Barnig C, Cernadas M, Ricklefs I, Krishnamoorthy N, Grossman NL, National Heart Lung, and Blood Institute’s Severe Asthma Research Program-3 Investigators, et al. Natural killer cell-mediated inflammation resolution is disabled in severe asthma. Sci Immunol. 2017;2:eaam5446. https://doi.org/10.1126/sciimmunol.aam5446.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Ono E, Dutile S, Kazani S, Wechsler ME, Yang J, Hammock BD, National Heart, Lung, and Blood Institute’s Asthma Clinical Research Network, et al. Lipoxin generation is related to soluble epoxide hydrolase activity in severe asthma. Am J Respir Crit Care Med. 2014;190:886–97.

    Article  CAS  Google Scholar 

  22. Guerra S, Halonen M, Vasquez MM, Spangenberg A, Stern DA, Morgan WJ, et al. Relation between circulating CC16 concentrations, lung function, and development of chronic obstructive pulmonary disease across the lifespan: a prospective study. Lancet Respir Med. 2015;3:613–20.

    Article  CAS  Google Scholar 

  23. Hodge S, Hodge G, Simpson JL, Yang IA, Upham J, James A, AMAZES Study Research Group, et al. Blood cytotoxic/inflammatory mediators in non-eosinophilic asthma. Clin Exp Allergy. 2016;46:60–70.

    Article  CAS  Google Scholar 

  24. Kim YS, Choi JP, Kim MH, Park HK, Yang S, Kim YS, et al. IgG sensitization to extracellular vesicles in indoor dust is closely associated with the prevalence of non-eosinophilic asthma, COPD, and lung cancer. Allergy, Asthma Immunol Res. 2016;8:198–205.

    Article  CAS  Google Scholar 

  25. Jeon SG, Moon HG, Kim YS, Choi JP, Shin TS, Hong SW, et al. 15-lipoxygenase metabolites play an important role in the development of a T-helper type 1 allergic inflammation induced by double-stranded RNA. Clin Exp Allergy. 2009;39:908–17.

    Article  CAS  Google Scholar 

  26. Demarche S, Schleich F, Henket M, Paulus V, Van Hees T, Louis R. Detailed analysis of sputum and systemic inflammation in asthma phenotypes: are paucigranulocytic asthmatics really non-inflammatory? BMC Pulm Med. 2016;16:46.

    Article  Google Scholar 

  27. Al-Alwan A, Bates JH, Chapman DG, Kaminsky DA, DeSarno MJ, Irvin CG, et al. The nonallergic asthma of obesity: a matter of distal lung compliance. Am J Respir Crit Care Med. 2014;189:1494–502.

    Article  Google Scholar 

  28. Ather JL, Chung M, Hoyt LR, Randall MJ, Georgsdottir A, Daphtary NA, et al. Weight loss decreases inherent and allergic methacholine hyperresponsiveness in mouse models of diet-induced obese asthma. Am J Respir Cell Mol Biol. 2016;55:176–87.

    Article  CAS  Google Scholar 

  29. Kim HY, Lee HJ, Chang YJ, Pichavant M, Shore SA, Fitzgerald KA, et al. Interleukin-17-producing innate lymphoid cells and the NLRP3 inflammasome facilitate obesity-associated airway hyperreactivity. Nat Med. 2014;20:54–61.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arihiko Kanehiro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kanehiro, A. (2019). Mechanisms for Non-eosinophilic Asthma. In: Yokoyama, A. (eds) Advances in Asthma. Respiratory Disease Series: Diagnostic Tools and Disease Managements. Springer, Singapore. https://doi.org/10.1007/978-981-13-2790-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-2790-2_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-2789-6

  • Online ISBN: 978-981-13-2790-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics