Skip to main content

Bioconversion of Waste Conversion Gases to Liquid Fuels: Challenges and Opportunities

  • Conference paper
  • First Online:
Waste Valorisation and Recycling

Abstract

Increasing emphasis towards biomethanation of food wastes, methane recovery from landfills are creating a large stock of methane which is inefficiently being converted to electricity in a low recovery mode. Conversion to methanol would instead substitute a high-value fossil fuel, increase capital recovery. Methanol is considered as one of key biofuel alternatives with high octane number, good storability and potential to be used in fuel cells. Commercially viable biological conversion of methane to methanol has still eluded technologists despite generation of methane from biomass via anaerobic digestion and thermochemical conversion to methanol. This paper examines challenges and opportunities for methane from biomethanation of MSW to be converted to methanol by the microbiological route with the help of methanotrophs. The microbiology and biochemistry of the process dictate that methane-oxidizing capability of methanotrophs need to be interrupted, chemically, biochemically or genetically and process optimized to enhance production of methanol, which is an intermediate in the methane oxidation process. The objective of this study was to amalgamate the knowledge of microbiology such as their isolation, metabolism and growth conditions along with the engineering challenges to mass produce methanol from methane. The current status and bottlenecks of this process are captured.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dhussa A (2004) Biogas in India. MNRE, India

    Google Scholar 

  2. Bamboriya ML (2013) Biogas generation, purification and bottling: development in India. India

    Google Scholar 

  3. Chanakya HN, Malayil S (2012) Anaerobic digestion for bioenergy from agro-residues and other solid wastes—an overview of science, technology and sustainability. J Indian Inst Sci 92(1):111–144

    CAS  Google Scholar 

  4. Pedersen TH, Schultz RH (2012) Technical and economic assessment of methanol production from biogas. Department of Energy Technology, University of Aalborg, Denmark

    Google Scholar 

  5. Yergin D, Bocca R (2012) Energy for economic growth. Report, Geneva, Switzerland

    Google Scholar 

  6. Shamsul NS et al (2014) An overview on the production of bio-methanol as potential renewable energy. Renew Sustain Energy Rev 33(42):578–588

    Article  CAS  Google Scholar 

  7. EIA (2017) International energy outlook 2017. Report, US

    Google Scholar 

  8. IEA (2015) India energy outlook. Report, Paris, France

    Google Scholar 

  9. Saraswat VK, Bansal R India’s Leapfrog to Methanol Economy. Retrieved from: http://niti.gov.in/content/india%E2%80%99s-leapfrog-methanol-economy

  10. Biofuels, The Fuel of the Future 2010. Retrieved from http://biofuel.org.uk/bioalcohols.html

  11. Anderson JE et al (2010) Octane numbers of ethanol- and methanol-gasoline blends estimated from molar concentrations. Energy Fuels 24(12):6576–6585

    Article  CAS  Google Scholar 

  12. Nicholas RJ (2003) The methanol story: a sustainable fuel for the future. J Sci Ind Res 62:97–105

    Google Scholar 

  13. Bio-Residue Map of India. Retrieved from: http://lab.cgpl.iisc.ernet.in/atlas/Atlas.aspx

  14. Joshi R, Ahmed S (2016) Status and challenges of municipal solid waste management in India: a review. Cognet Environ Sci 2:1139434

    Google Scholar 

  15. Knittel K, Boetius A (2009) Anaerobic oxidation of methane: progress with an unknown process. Annu Rev Microbiol 63:311–334

    Article  CAS  Google Scholar 

  16. Anthony C (1982) The biochemistry of methylotrophs. Academic Press, London, p 431

    Google Scholar 

  17. Boetius A et al (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407:623–626

    Article  CAS  Google Scholar 

  18. Whittenbury R, Phillips KC, Wilkinson JF (1970) Enrichment, isolation, and some properties of methane-utilizing bacteria. Microbiology 61:205–218

    CAS  Google Scholar 

  19. Hanson RS, Hanson TE (1996) Methanotrophic bacteria. Microbiol Rev 60(2):439–471

    CAS  Google Scholar 

  20. Fei Q et al (2014) Bioconversion of natural gas to liquid fuel: opportunities and challenges. Biotechnol Adv 3:596–614

    Article  Google Scholar 

  21. Sharp CE et al (2014) Distribution and diversity of verrucomicrobia methanotrophs in geothermal and acidic environments. Environ Microbiol 16(6):1867–1878

    Article  CAS  Google Scholar 

  22. Hutton WE, Zobell CE (1949) The occurrence and characteristics of methane-oxidizing bacteria in marine sediment. J Bacteriol 58(4):463

    CAS  Google Scholar 

  23. Bowman J (2006) The methanotrophs—the families methylococcaceae and methylocystaceae. Prokaryotes 5:266–289

    Article  Google Scholar 

  24. Hinrichs Ku et al (1999) Methane-consuming archaebacteria in marine sediments. Nature 398(6730):802–805

    Article  CAS  Google Scholar 

  25. Hwang IY et al (2015) Batch conversion of methane to methanol using Methylosinus trichosporium OB3b as biocatalyst. Microbiol Biotechnol 25(3):375–380

    Article  CAS  Google Scholar 

  26. Blanksby SJ, Ellison GB (2003) Bond dissociation energies of organic molecules. Acc Chem Res 36(4):255–263

    Article  CAS  Google Scholar 

  27. Park D, Lee J (2013) Biological conversion of methane to methanol. Korean J Chem Eng 30(5):977–987

    Article  CAS  Google Scholar 

  28. Hur DH et al (2016) Highly efficient bioconversion of methane to methanol using a novel type 1 Methylomonas sp. DH-1 newly isolated from brewery waste sludge. Chem Technol Biotechnol 92(2):311–318

    Article  Google Scholar 

  29. Hwang IY et al (2014) Biocatalytic conversion of methane to methanol as a key step for development of methane-based bio-refineries. J Microb Biotechnol 24(12):1597–1605

    Article  CAS  Google Scholar 

  30. Duan C (2011) High-rate conversion of methane to methanol by Methylosinus trichosporium OB3b. Biores Technol 102(15):7349–7353

    Article  CAS  Google Scholar 

  31. Frank J et al (1989) On the mechanism of inhibition of methanol dehydrogenase by cyclopropane-derived inhibitors. FEBS J 184(1):187–195

    CAS  Google Scholar 

  32. Furuto et al (1999) Semicontinuous methaol biosynthesis by Methylosinus trichosporium OB3b. J Mol Catal 144:257–261

    Article  CAS  Google Scholar 

  33. Xin JY et al (2009) Production of methanol from methane by methanotrophic bacteria. Biocatal Biotransform 22(3):225–229

    Article  Google Scholar 

  34. Kim HG et al (2010) Optimization of lab scale methanol production by Methylosinus trichosporium OB3b 15(3):476–480

    Google Scholar 

  35. Kalyuzhnaya MG et al (2015) Metabolic engineering in methanotrophic bacteria. Metab Eng 29:142–152

    Article  CAS  Google Scholar 

  36. Duan Z, Mao S (2006) A thermodynamic model for calculating methane solubility, density and gas phase composition of methane-bearing aqueous fluids from 273 to 523 K and from 1 to 2000 bar. Geochim Cosmochim Acta 70(13):3369–3386

    Article  CAS  Google Scholar 

  37. Vendruscolo F et al (2012) Determination of oxygen solubility in liquid media. ISRN Chemical Engineering

    Google Scholar 

  38. Guo H et al (2013) In situ Raman spectroscopic study of diffusion coefficients of methane in liquid water under high pressure and wide temperatures. Fluid Phase Equilib 360:274–278

    Article  CAS  Google Scholar 

  39. Han P, Bartels DM (1996) Temperature dependence of oxygen diffusion in H2O and D2O. J Phys Chem 100(13):5597–5602

    Article  CAS  Google Scholar 

  40. Sheets JP et al (2016) Biological conversion of bio-gas to methanol using methanotrophs isolated from solid-state anaerobic digestate. Biores Technol 201:50–57

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. N. Chanakya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Paliwal, A., Chanakya, H.N., Khuntia, H.K. (2019). Bioconversion of Waste Conversion Gases to Liquid Fuels: Challenges and Opportunities. In: Ghosh, S. (eds) Waste Valorisation and Recycling. Springer, Singapore. https://doi.org/10.1007/978-981-13-2784-1_45

Download citation

Publish with us

Policies and ethics