Skip to main content

Phosphorus Management in Agroecosytems and Role and Relevance of Microbes in Environmental Sustainability

  • Chapter
  • First Online:

Abstract

Phosphorus (P) is an important macronutrient source for plant growth. However, it is a limiting mineral resource based on its availability in the environment and the form it is available to the plants. High amount of phosphorus use in soil is often considered to be non-productive to agriculture and can lead to mineral and heavy metal accumulation, soil leaching, surface run-off, and eutrophication in water bodies. This chapter reviews literature concerning P management practices in agriculture, the importance, role and relevance of microorganisms in P availability, environmental sustainability and the perspective of these microbes is discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ahemad, M. (2015). Phosphate-solubilizing bacteria-assisted phytoremediation of metalliferous soils: A review. Biotech, 5, 111–121.

    Google Scholar 

  • Arcand, M. M., & Schneider, K. D. (2006). Plant- and microbial-based mechanisms to improve the agronomic effectiveness of phosphate rock: A review. Anais da Academia Brasileira de Ciências, 78, 791–807.

    Article  CAS  Google Scholar 

  • Armstrong, D. L. (1988). Role of phosphorus in plants: In better crops with plant Food pp 4-DI Armstrong. Atlanta: Potash and Phosphate Institute.

    Google Scholar 

  • Balemi, T., & Negisho, K. (2012). Management of soil phosphorus and plant adaptation mechanisms to phosphorus stress for sustainable crop production: A review. Journal of Soil Science and Plant Nutrition, 12, 547–562.

    Article  Google Scholar 

  • Berruti, A., Lumini, E., Balestrini, R., & Bianciotto, V. (2015). Arbuscular mycorrhizal fungi as natural biofertilizers: Let’s benefit from past successes. Frontiers in Microbiology, 6, 1559.

    Google Scholar 

  • Charana Walpola, B., & Yoon, M. H. (2013). Phosphate solubilizing bacteria: Assessment of their effect on growth promotion and phosphorus uptake of mung bean (Vigna radiata [L.] R. Wilczek). Chilean Journal of Agricultural Research, 73(3), 275–281.

    Article  Google Scholar 

  • Chen, Y., Fan, J.-B., Du, L., Xu, H., Zhang, Q.-H., & He, Y.-Q. (2014). The application of phosphate solubilizing endophyte Pantoea dispersa triggers the microbial community in red acidic soil. Applied Soil Ecology, 84, 235–244.

    Article  Google Scholar 

  • Chhabra, S., & Dowling, D. N. (2017). Endophyte-promoted nutrient acquisition: Phosphorus and iron. In Functional importance of the plant microbiome (pp. 21–42). Cham: Springer.

    Chapter  Google Scholar 

  • Chhabra, S., Brazil, D., Morrissey, J., Burke, J. I., O’Gara, F., & N Dowling, D. (2013). Characterization of mineral phosphate solubilization traits from a barley rhizosphere soil functional metagenome. Microbiology Open, 2, 717–724.

    CAS  Google Scholar 

  • Compton, J., Mallinson, D., Glenn, C. R., Filippelli, G., Föllmi, K., Shields, G., & Zanin, Y. (2000). Variations in the global phosphorus cycle. In Marine Authigenesis: From global to microbial (Vol. 66, pp. 21–33). United States: SEPM.

    Chapter  Google Scholar 

  • Crespo, J. M., Boiardi, J. L., & Luna, M. F. (2011). Mineral phosphate solubilization activity of gluconacetobacter diazotrophicus under P-limitation and plant root environment. Agricultural Sciences, 2, 16–22.

    Article  CAS  Google Scholar 

  • Demissie, S., Muleta, D., & Berecha, G. (2013). Effect of phosphate solubilizing bacteria on seed germination and seedling growth of faba bean (Vicia faba L.). International Journal of Agricultural Research, 8, 123–136.

    Article  CAS  Google Scholar 

  • Ganesan, V. (2008). Rhizoremediation of cadmium soil using a cadmium-resistant plant growth-promoting rhizopseudomonad. Current Microbiology, 56, 403–407.

    Article  CAS  Google Scholar 

  • Ghoreishi, F., & Etemadifar, Z. (2017). Heavy metal removal by phosphate solubilizing Acinetobacter calcoaceticus isolated from rhizosphere. Journal of Biology, 6, 230–239.

    Google Scholar 

  • Gill, S. S., Gill, R., Trivedi, D. K., Anjum, N. A., Sharma, K. K., Ansari, M. W., Ansari, A. A., Johri, A. K., Prasad, R., Pereira, E., Varma, A., & Tuteja, N. (2016). Piriformospora indica: Potential and significance in plant stress tolerance. Frontiers in Microbiology, 7(332). https://doi.org/10.3389/fmicb.2016.00332.

  • Giuffréde López Carnelo, L., de Miguez, S. R., & Marbán, L. (1997). Heavy metals input with phosphate fertilizers used in Argentina. Science of the Total Environment, 204, 245–250.

    Article  Google Scholar 

  • Gupta, A., Rai, V., Bagdwal, N., & Goel, R. (2005). In situ characterization of mercury-resistant growth-promoting fluorescent pseudomonads. Microbiological Research, 160, 385–388.

    Article  CAS  Google Scholar 

  • Gupta, D. K., Chatterjee, S., Datta, S., Veer, V., & Walther, C. (2014). Role of phosphate fertilizers in heavy metal uptake and detoxification of toxic metals. Chemosphere, 108, 134–144.

    Article  CAS  Google Scholar 

  • Gyaneshwar, P., Naresh Kumar, G., Parekh, L. J., & Poole, P. S. (2002). Role of soil microorganisms in improving P nutrition of plants. Plant and Soil, 245, 83–93.

    Article  CAS  Google Scholar 

  • Hakim, S. S., Budi, S. W., & Turjaman, M. (2015). Phosphate solubilizing and antifungal activity of root endophyte isolated from Shorea leprosula Miq. and Shoreal selanica (DC) Blume. Jurnal manajemen hutan tropika, 21, 138–146.

    Article  Google Scholar 

  • Hayes, J. E., Simpson, R. J., & Richardson, A. E. (2000). The growth and phosphorus utilization of plants in sterile media when supplied with inositol hexaphosphate, glucose 1-phosphate or inorganic phosphate. Plant and Soil, 220, 165–174.

    Article  CAS  Google Scholar 

  • Hinsinger, P. (2001). Bioavailability of trace elements as related to root-induced chemical changes in the rhizosphere. In G. R. Gobran, W. W. Wenzel, & E. Lombi (Eds.), Trace elements in the rhizosphere (pp. 163–182). United States: CRC Press.

    Google Scholar 

  • Idriss, E. E., Makarewicz, O., Farouk, A., Rosner, K., Greiner, R., Bochow, H., Richter, T., & Borriss, R. (2002). Extracellular phytase activity of Bacillus amyloliquefaciens FZB45 contributes to its plant-growth-promoting effect. Microbiology, 148, 2097–2109.

    Article  CAS  Google Scholar 

  • Igiehon, N. O., & Babalola, O. O. (2017). Biofertilizers and sustainable agriculture: Exploring arbuscular mycorrhizal fungi. Applied Microbiology and Biotechnology, 101, 4871–4881.

    Article  CAS  Google Scholar 

  • International Fertilizer Association IFA. (2009). The global ‘4R’ nutrient stewardship framework: Developing fertilizer best management practices for delivering economic, social and environmental benefits, Paris, France. http://www.fertilizer.org/ifa/Home-Page/LIBRARY/Publication-database.html/The-Global-4R-Nutrient-Stewardship-Framework-for-Developing-and-Delivering-Fertilizer-Best-Management-Practices.html2

  • International Plant Nutrient Institute IPNI. (2014). 4R Nutrient stewardship portal. Available at: http://www.ipni.net/4R. Accessed Feb 9 2018

  • Intorne, A. C., de Oliveira, M. V. V., Lima, M. L., da Silva, J. F., Olivares, F. L., & de Souza Filho, G. A. (2009). Identification and characterization of Gluconacetobacter diazotrophicus mutants defective in the solubilization of phosphorus and zinc. Archives of Microbiology, 191, 477–483.

    Article  CAS  Google Scholar 

  • Jahan, M., Nassiri Mahallati, M., Amiri, M. B., & Ehyayi, H. R. (2013). Radiation absorption and use efficiency of sesame as affected by biofertilizers inoculation in a low input cropping system. Industrial Crops and Products, 43, 606–611.

    Article  Google Scholar 

  • Jog, R., Pandya, M., Nareshkumar, G., & Rajkumar, S. (2014). Mechanism of phosphate solubilization and antifungal activity of Streptomyces spp. isolated from wheat roots and rhizosphere and their application in improving plant growth. Microbiology, 160, 778–788.

    Article  CAS  Google Scholar 

  • Johri, A. K., Oelmüller, R., Dua, M., Yadav, V., Kumar, M., Tuteja, N., Varma, A., Bonfante, P., Persson, B. L., & Stroud, R. M. (2015). Fungal association and utilization of phosphate by plants: Success, limitations, and future prospects. Frontiers in Microbiology, 6, 984.

    Article  Google Scholar 

  • Kageyama, S. A., Mandyam, K. G., & Jumpponen, A. (2008). Diversity, function and potential applications of the root-associated endophytes. In P. D. A. Varma (Ed.), Mycorrhiza (pp. 29–57). Berlin/Heidelberg: Springer.

    Chapter  Google Scholar 

  • Keller, A., & Schulin, R. (2003). Modelling heavy metal and phosphorus balances for farming systems. Nutrient Cycling in Agroecosystems, 66, 271–284.

    Article  CAS  Google Scholar 

  • Kepert, D. G., Robson, A. D., & Posner, A. M. (1979). The effect of organic root products on the availability of phosphorus to plants. In J. L. Harley & R. S. Russell (Eds.), The soil–root interface (pp. 115–124). London: Academic.

    Chapter  Google Scholar 

  • Khan, A., Sharif, M., Ali, A., Shah, S. N. M., Mian, I. A., Fazli Wahid, B. J., Adnan, M., Nawaz, S., & Ali, N. (2014a). Potential of AM fungi in phytoremediation of heavy metals and effect on yield of wheat crop. American Journal of Plant Sciences, 5, 1578.

    Article  Google Scholar 

  • Khan, M. S., Zaidi, A., & Ahmad, E. (2014b). Mechanism of phosphate solubilization and physiological functions of phosphate-solubilizing microorganisms. In Phosphate solubilizing microorganisms (pp. 31–62). Cham: Springer.

    Google Scholar 

  • Kim, S. J., Eo, J.-K., Lee, E.-H., Park, H., & Eom, A.-H. (2017). Effects of arbuscular mycorrhizal fungi and soil conditions on crop plant growth. Mycobiology, 45, 20–24.

    Article  Google Scholar 

  • Kucey, R. M. N. (1983). Phosphate-solubilizing bacteria and fungi in various cultivated and virgin alberta soils. Canadian Journal of Soil Science, 63, 671–678.

    Article  CAS  Google Scholar 

  • Kumar, K. V., Srivastava, S., Singh, N., & Behl, H. M. (2009). Role of metal resistant plant growth promoting bacteria in ameliorating fly ash to the growth of Brassica juncea. Journal of Hazardous Materials, 170, 51–57.

    Article  CAS  Google Scholar 

  • Kumar, M., Yadav, V., Kumar, H., Sharma, R., Singh, A., Tuteja, N., & Johri, A. K. (2011). Piriformospora indica enhances plant growth by transferring phosphate. Plant Signaling & Behavior, 6, 723–725.

    Article  CAS  Google Scholar 

  • Li, K., & Ramakrishna, W. (2011). Effect of multiple metal resistant bacteria from contaminated lake sediments on metal accumulation and plant growth. Journal of Hazardous Materials, 189, 531–539.

    Article  CAS  Google Scholar 

  • López-López, A., Rogel, M. A., Ormeño-Orrillo, E., Martínez-Romero, J., & Martínez-Romero, E. (2010). Phaseolus vulgaris seed-borne endophytic community with novel bacterial species such as Rhizobium endophyticum sp. nov. Systematic and Applied Microbiology, 33, 322–327.

    Article  Google Scholar 

  • Ma, Y., Rajkumar, M., & Freitas, H. (2009a). Isolation and characterization of Ni mobilizing PGPB from serpentine soils and their potential in promoting plant growth and Ni accumulation by Brassica spp. Chemosphere, 75, 719–725.

    Article  CAS  Google Scholar 

  • Ma, Y., Rajkumar, M., & Freitas, H. (2009b). Inoculation of plant growth promoting bacterium Achromobacter xylosoxidans strain Ax10 for the improvement of copper phytoextraction by Brassica juncea. Journal of Environmental Management, 90, 831–837.

    Article  Google Scholar 

  • McDowell, R. W., Sharpley, A. N., Condron, L. M., Haygarth, P. M., & Brookes, P. C. (2001). Processes controlling soil phosphorus release to runoff and implications for agricultural management. Nutrient Cycling in Agroecosystems, 59, 269–284.

    Article  Google Scholar 

  • Misra, N., Gupta, G., & Jha, P. N. (2012). Assessment of mineral phosphate-solubilizing properties and molecular characterization of zinc-tolerant bacteria. Journal of Basic Microbiology, 52, 549–558.

    Article  CAS  Google Scholar 

  • Mohamed, H. M., & Almaroai, Y. A. (2017). Effect of phosphate solubilizing bacteria on the uptake of heavy metals by corn plants in a long-term sewage wastewater treated soil. International Journal of Environmental Science and Development, 8, 366.

    Article  CAS  Google Scholar 

  • Norrish, K., & Rosser, H. (1983). Soils: An Australian viewpoint. Melbourne/London: CSIRO/Academic Mineral phosphate; pp. 335–361.

    Google Scholar 

  • Otieno, N., Lally, R., Kiwanuka, S., Lloyd, A., Ryan, D., Germaine, K., & Dowling, D. (2015). Plant growth promotion induced by phosphate solubilizing endophytic Pseudomonas isolates. Frontiers in Microbiology, 6, 745.

    Google Scholar 

  • Oves, M., Khan, M. S., & Zaidi, A. (2013). Chromium reducing and plant growth promoting novel strain Pseudomonas aeruginosa OSG41 enhance chickpea growth in chromium amended soils. European Journal of Soil Biology, 56, 72–83.

    Article  CAS  Google Scholar 

  • Paul Raj, D., Rhema SB Linda, R., & Babyson, S. (2014). Molecular characterization of phosphate solubilizing bacteria (PSB) and plant growth promoting rhizobacteria (PGPR) from pristine soils. International Journal of Transportation Science and Technology, 1, 317–324.

    Google Scholar 

  • Prasad, R., Pham, G. H., Kumari, R., Singh, A., Yadav, V., Sachdev, M., PeskanT, H. S., Oelmuller, R., Garg, A. P., & Varma, A. (2005). Sebacinaceae: Culturable mycorrhiza–like endosymbiotic fungi and their interaction with non-transformed and transformed roots. In S. Declerck, D. G. Strullu, & J. A. Fortin (Eds.), In vitro culture of Mycorrhizas (Vol. 4, pp. 291–312). Berlin/Heidelberg: Springer-Verlag.

    Chapter  Google Scholar 

  • Prasad, R., Bagde, U. S., Pushpangdan, P., & Varma, A. (2008). Bacopa monniera L.: Pharmacological aspects and case study involving Piriformospora indica. International Journal of Integrative Biology, 3, 100–110.

    CAS  Google Scholar 

  • Prasad, R., Kamal, S., Sharma, P. K., Oelmueller, R., & Varma, A. (2013). Root endophyte Piriformospora indica DSM 11827 alters plant morphology, enhances biomass and antioxidant activity of medicinal plant Bacopa monniera. Journal of Basic Microbiology, 53(12), 1016–1024.

    Article  CAS  Google Scholar 

  • Rajkumar, M., Nagendran, R., Lee, K. J., Lee, W. H., & Kim, S. Z. (2006). Influence of plant growth promoting bacteria and Cr6+ on the growth of Indian mustard. Chemosphere, 62, 741–748.

    Article  CAS  Google Scholar 

  • Richardson, A. E. (1994). Soil microorganisms and phosphorus availability. In C. E. Pankhurst, B. M. Doube, G. VVSR, & P. R. Grace (Eds.), Soil biota: Management in sustainable farming systems (pp. 50–62). Melbourne: CSIRO.

    Google Scholar 

  • Richardson, A. E. (2007). Making microorganisms mobilize soil phosphorus. In First international meeting on microbial phosphate solubilization (pp. 85–90). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Richardson, A. E., & Simpson, R. J. (2011). Soil microorganisms mediating phosphorus availability update on microbial phosphorus. Plant Physiology, 156, 989–996.

    Article  CAS  Google Scholar 

  • Rodríguez, H., & Fraga, R. (1999). Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnology Advances, 17, 319–339.

    Article  Google Scholar 

  • Ruangsanka, S. (2014). Identification of phosphate-solubilizing fungi from the asparagus rhizosphere as antagonists of the root and crown rot pathogen Fusarium oxysporum. Science Asia, 40, 16–20.

    Article  Google Scholar 

  • Sandip, B., Subrata, P., & Swati, R. G. (2011). Isolation and characterization of plant growth promoting Bacillus Thuringiensis from agricultural soil of West Bengal. Research Journal of Biotechnology, 6, 9–13.

    CAS  Google Scholar 

  • Sato, T., Ezawa, T., Cheng, W., & Tawaraya, K. (2015). Release of acid phosphatase from extraradical hyphae of arbuscular mycorrhizal fungus Rhizophagus clarus. Soil Science & Plant Nutrition, 61, 269–274.

    Article  CAS  Google Scholar 

  • Sharma, S. B., Sayyed, R. Z., Trivedi, M. H., & Gobi, T. A. (2013). Phosphate solubilizing microbes: Sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus, 2, 587.

    Article  Google Scholar 

  • Sharpley, A. (2016). Managing agricultural phosphorus to minimize water quality impacts. Science in Agriculture, 73, 1–8.

    CAS  Google Scholar 

  • Shen, J., Yuan, L., Zhang, J., Li, H., Bai, Z., Chen, X., Zhang, W., & Zhang, F. (2011). Phosphorus dynamics: From soil to plant. Plant Physiology, 156, 997–1005.

    Article  CAS  Google Scholar 

  • Singh, B., & Satyanarayana, T. (2010). Plant growth promotion by an extracellular HAP-phytase of a thermophilic mold Sporotrichum thermophile. Applied Biochemistry and Biotechnology, 160, 1267–1276.

    Article  CAS  Google Scholar 

  • Singh, B., & Satyanarayana, T. (2011). Microbial phytases in phosphorus acquisition and plant growth promotion. Physiology and Molecular Biology of Plants, 17, 93–103.

    Article  CAS  Google Scholar 

  • Surapat, W., Pukahuta, C., Rattanachaikunsopon, P., Aimi, T., & Boonlue, S. (2013). Characteristics of phosphate solubilization by phosphate-solubilizing bacteria isolated from agricultural chili soil and their efficiency on the growth of chili (Capsicum frutescens L. cv. Hua Rua). Chiang Mai Journal of Science, 40, 11–25.

    CAS  Google Scholar 

  • Swarnalakshmi, K., Prasanna, R., Kumar, A., Pattnaik, S., Chakravarty, K., Shivay, Y. S., Singh, R., & Saxena, A. K. (2013). Evaluating the influence of novel cyanobacterial biofilmed biofertilizers on soil fertility and plant nutrition in wheat. European Journal of Soil Biology, 55, 107–116.

    Article  Google Scholar 

  • Tank, N., & Saraf, M. (2009). Enhancement of plant growth and decontamination of nickel-spiked soil using PGPR. Journal of Basic Microbiology, 49, 195–204.

    Article  CAS  Google Scholar 

  • Tate, K. R. (1984). The biological transformation of P in soil. In Biological processes and soil fertility (pp. 245–256). Berlin: Springer.

    Chapter  Google Scholar 

  • Taurian, T., Anzuay, M. S., Ludueña, L. M., Angelini, J. G., Muñoz, V., Valetti, L., & Fabra, A. (2013). Effects of single and co-inoculation with native phosphate solubilising strain Pantoea sp J49 and the symbiotic nitrogen fixing bacterium Bradyrhizobium sp SEMIA 6144 on peanut (Arachis hypogea L.) growth. Symbiosis, 59, 77–85.

    Article  Google Scholar 

  • Unno, Y., Okubo, K., Wasaki, J., Shinano, T., & Osaki, M. (2005). Plant growth promotion abilities and microscale bacterial dynamics in the rhizosphere of Lupin analysed by phytate utilization ability. Environmental Microbiology, 7, 396–404.

    Article  Google Scholar 

  • Upadhyay, A., & Srivastava, S. (2010). Evaluation of multiple plant growth promoting traits of an isolate of Pseudomonas fluorescens strain Psd. Indian Journal of Experimental Biology, 48, 601–609.

    CAS  Google Scholar 

  • Wang, H.-Y., Liu, S., Zhai, L.-M., Zhang, J.-Z., Ren, T.-Z., Fan, B.-Q., & Liu, H.-B. (2015a). Preparation and utilization of phosphate biofertilizers using agricultural waste. Journal of Integrative Agriculture, 14, 158–167.

    Article  CAS  Google Scholar 

  • Wang, R., Guo, S., Li, N., Li, R., Zhang, Y., Jiang, J., Wang, Z., Liu, Q., Wu, D., Sun, Q., Du, L., & Zhao, M. (2015b). Phosphorus accumulation and sorption in calcareous soil under long-term fertilization. PLoS One, 10, e0135160.

    Article  Google Scholar 

  • Wani, P. A., & Khan, M. S. (2010). Bacillus species enhance growth parameters of chickpea (Cicer arietinum L.) in chromium stressed soils. Food and Chemical Toxicology, 48, 3262–3267.

    Article  CAS  Google Scholar 

  • Xiao, C., Zhang, H., Fang, Y., & Chi, R. (2013). Evaluation for rock phosphate solubilization in fermentation and soil–plant system using a stress-tolerant phosphate-solubilizing Aspergillus niger WHAK1. Applied Microbiology and Biotechnology, 169, 123–133.

    CAS  Google Scholar 

  • Yadav, R. S., & Tarafdar, J. C. (2003). Phytase and phosphatase producing fungi in arid and semi-arid soils and their efficiency in hydrolyzing different organic P compounds. Soil Biology and Biochemistry, 35, 745–751.

    Article  CAS  Google Scholar 

  • Zhao, K., Penttinen, P., Zhang, X., Ao, X., Liu, M., Yu, X., & Chen, Q. (2014). Maize rhizosphere in Sichuan, China, hosts plant growth promoting Burkholderia cepacia with phosphate solubilizing and antifungal abilities. Microbiological Research, 169, 76–82.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The author acknowledges the support provided by MicroGen Biotech Ltd, Ireland and its seed funding agency and research support team.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chhabra, S. (2019). Phosphorus Management in Agroecosytems and Role and Relevance of Microbes in Environmental Sustainability. In: Shah, S., Venkatramanan, V., Prasad, R. (eds) Sustainable Green Technologies for Environmental Management. Springer, Singapore. https://doi.org/10.1007/978-981-13-2772-8_3

Download citation

Publish with us

Policies and ethics