Skip to main content

Harnessing Microbial Potential for Wastewater Treatment in Constructed Wetlands

  • Chapter
  • First Online:
Sustainable Green Technologies for Environmental Management

Abstract

Microbial community constitute a major component of constructed wetlands (CWs), playing a major role in these systems capacities for treating wastewater. Constructed wetland system has a hydraulic regime, although the volume of inflow in the wetland is never the same as the outflow. Wetland are either of Free Water Surface (FWS) or Subsurface Flow (SF). Nitrogen, the most important component in constructed wetlands undergoes transformation by various processes converting N into one to another form and by plant uptake. For instance, nitrification is more impactful for ammonia reduction and its removal relies on the configuration of the wetland and the dissolved oxygen (DO). The chapter discusses the types of wetlands and their physical, chemical and biological processes in the removal of various contaminants. It also gives an overview of different microbial processes and their mechanisms involved during the treatment of wastewater inside constructed wetland systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bodtker, G., Thorstenson, T., Lillebo, B. L. P., Thorbjornsen, B. E., Ulvoen, R. H., et al. (2008). The effect of long-term nitrate treatment on SRB activity, corrosion rate and bacterial community composition in offshore water injection systems. Journal of Industrial Microbiology & Biotechnology, 35, 1625–1636.

    Article  CAS  Google Scholar 

  • Button, M., Weber, K. P., Nivala, J., Aubron, T., & Muller, R. A. (2015). Community-level physiological profiling of constructed wetland microbial communities: Effects of sample preparation. Applied Biochemistry and Biotechnology, 178, 960–973.

    Article  Google Scholar 

  • Button, M., Auvinen, H., Van Koetsem, F., Hosseinkhani, B., Rousseau, D., Weber, K. P., & Du Laing, G. (2016). Susceptibility of constructed wetland microbial communities to silver nanoparticles: A microcosm study. Ecological Engineering, 97, 476–485.

    Article  Google Scholar 

  • Calheiros, C. S. C., Duque, A. F., Moura, A., Henriques, I. S., Correia, A., et al. (2009). Substrate effect on bacterial communities from constructed wetlands planted with Typha latifolia treating industrial wastewater. Ecological Engineering, 35, 744–753.

    Article  Google Scholar 

  • Characklis, G. W., Dilts, M. J., Simmons, O. D., Likirdopulos, C. A., Krometis, L.-A. H., & Sobsey, M. D. (2005). Microbial partitioning to settleable particles in stormwater. Water Research, 39, 1773–1782.

    Article  CAS  Google Scholar 

  • Chouinard, A., Balch, G. C., Jorgensen, S. E., Yates, C. N., & Wootton, B. C. (2014). Tundra wetlands: The treatment of municipal wastewaters. RBC blue water project: performance & operational tools. CWAT, Fleming College pp. 380.

    Google Scholar 

  • Dong, X., & Reddy, G. B. (2010). Soil bacterial communities in constructed wetlands treated with swine wastewater using PCR-DGGE technique. Bioresource Technology, 101, 1175–1182.

    Article  CAS  Google Scholar 

  • Dong, Z., & Sun, T. (2007). A potential new process for improving nitrogen removal in constructed wetlands-promoting coexistence of partial-nitrification and ANAMMOX. Ecological Engineering, 31, 69–78.

    Article  Google Scholar 

  • Forbes, D. A., Reddy, G. B., Hunt, P. G., Poach, M. E., Ro, K. S., et al. (2010). Comparison of aerated marsh-pond-marsh and continuous marsh constructed wetlands for treating swine wastewater. Journal of Environmental Science and Health, 45, 803–809.

    Article  CAS  Google Scholar 

  • Frey, S. D., Knorr, M., Parrent, J. L., & Simpson, R. T. (2004). Chronic nitrogen enrichment affects thee structure and function of the soil microbial community in temperate hardwood and pine forests. Forest Ecology and Management, 196, 159–171.

    Article  Google Scholar 

  • Gray, N. F. (2004). Biology of wastewater treatment, Series in Environmental Science and Management. London: Imperial College Press.

    Book  Google Scholar 

  • Gustavsson, L., & Engwall, M. (2012). Treatment of sludge containing nitro-aromatic compounds in reed-bed mesocosms- water, BOD, carbon and nutrient removal. Waste Management, 32, 104–109.

    Article  CAS  Google Scholar 

  • Han, H. S., & Lee, K. D. (2005). Phosphate and potassium solubilizing bacteria effect on mineral uptake, soil availability and growth of eggplant. Research Journal of Agriculture and Biological Sciences, 1, 176–180.

    Google Scholar 

  • Herbst, F. A., Lunsmann, V., Kjeldal, H., Jehmlich, N., Tholey, A., von Bergen, M., Nielsen, J. L., Hettich, R. L., Seifert, J., & Nielsen, P. H. (2016). Enhancing metaproteomics-the value of models and defined environmental microbial systems. Proteomics, 16, 783–798.

    Article  CAS  Google Scholar 

  • Hilton, B. L. (1993). Performance evaluation of a closed ecological life support system (CELSS) employing constructed wetlands. In G. A. Moshiri (Ed.), Constructed wetlands for water quality improvement (pp. 117–125). Boca Raton: CRC Press.

    Google Scholar 

  • Hirayama, H., Takai, K., Inagaki, F., Yamato, Y., Suzuki, M., et al. (2005). Bacterial community shift along a subsurface geothermal water stream in a Japanese gold mine. Extremophiles, 9, 169–184.

    Article  CAS  Google Scholar 

  • Hoffland, E., Van Den Boogaard, R., Nelemans, J., & Findenegg, G. (1992). Biosynthesis and root exudation of citric and malic acids in phosphate-starved rape plants. The New Phytologist, 122, 675–680.

    Article  CAS  Google Scholar 

  • Ibekwe, A. M., Grieve, C. M., & Lyon, S. R. (2003). Characterization of microbial communities and composition in constructed dairy wetland wastewater effluent. Applied and Environmental Microbiology, 69, 5060–5069.

    Article  CAS  Google Scholar 

  • Ibekwe, A. M., Ma, J., Murinda, S., & Reddy, G. B. (2017). Microbial diversity in continuous flow constructed a wetland for the treatment of swine waste. Hydrology Current Research, 8, 277.

    Google Scholar 

  • Ipsilantis, I., & Sylvia, D. M. (2007). Abundance of fungi and bacteria in a nutrient impacted Florida wetland. Applied Soil Ecology, 35, 272–280.

    Article  Google Scholar 

  • Johnston, C. A. (1991). Sediment and nutrient retention by freshwater wetlands: Effects on surface water quality. Critical Reviews in Environmental Control, 21(5), 491–565.

    Article  Google Scholar 

  • Kaushal, M., Wani, S. P., Patil, M. D., & Datta, A. (2016). Monitoring efficacy of constructed wetland for treating domestic effluent-microbiological approach. Current Science, 110, 1710–1715.

    Article  Google Scholar 

  • Kaushal, M., Patil, M. D., & Wani, S. P. (2017). Potency of constructed wetlands for deportation of pathogens index from rural, urban and industrial wastewater. International Journal of Environmental Science and Technology, 15, 637–648. https://doi.org/10.1007/s13762-017-1423-y.

    Article  CAS  Google Scholar 

  • Kroger, R., Pierce, S. C., Littlejohn, K. A., Moore, M. T., & Farris, J. L. (2012). Decreasing nitrate-N loads to coastal ecosystems with innovative drainage management strategies in agricultural landscapes: An experimental approach. Agricultural Water Management, 103, 162–166.

    Article  Google Scholar 

  • Kuenen, J. G. (2008). Anammox bacteria: From discovery to application. Nature Reviews. Microbiology, 6(4), 320–326.

    Article  CAS  Google Scholar 

  • Lauber, C. L., Strickland, M. S., Bradford, M. A., & Fierer, N. (2008). The influence of soil properties on the structure of bacterial and fungal communities across land-use types. Soil Biology and Biochemistry, 40, 2407–2415.

    Article  CAS  Google Scholar 

  • Long, Y., Yi, H., Chen, S., Zhang, Z., Cui, K., et al. (2016). Influences of plant type on bacterial and archaeal communities in constructed wetland treating polluted river water. Environmental Science and Pollution Research, 23, 19570–19579.

    Article  CAS  Google Scholar 

  • Miersch, J., Tschimedbalshir, M., Barlocher, F., Grams, Y., Pierau, B., Schierhorn, A., & Kraus, G. J. (2001). Heavy metals and thiol compounds in Mucor racemosus and Articulospora tetracladia. Mycological Research, 105, 883–889.

    Article  CAS  Google Scholar 

  • Mitchell, C. (1996). Pollutant removal mechanisms in artificial wetlands: Course notes for the IWES 96. Gold Coast: International Winter Environmental School.

    Google Scholar 

  • Mitsch, W. J., & Gosselink, J. G. (1986). Wetlands. New York: Van Nostrand Reinhold.

    Google Scholar 

  • Mitsch, W. J., & Gosselink, J. G. (2007). Wetlands (4th ed.). Hoboken: Wiley p 582.

    Google Scholar 

  • Nelson, C. E. (2009). Phenology of high-elevation pelagic bacteria: The roles of meteorologic variability, catchment inputs and thermal stratification in structuring communities. The ISME Journal, 3, 13–30.

    Article  CAS  Google Scholar 

  • Nolvak, H., Truu, M., Tiirik, K., Oopkaup, K., Sildvee, T., Kaasik, A., Mander, U., & Truu, J. (2013). Dynamics of antibiotic resistance genes and their relationships with system treatment efficiency in a horizontal subsurface flow constructed wetland. Science of the Total Environment, 1, 636–644.

    Article  Google Scholar 

  • Oehl, F., Frossard, E., Fliessbach, A., Dubois, D., & Oberson, A. (2004). Basal organic phosphorus mineralization in soils under different farming systems. Soil Biology and Biochemistry, 36, 667–675.

    Article  CAS  Google Scholar 

  • Oopkaup, K., Truu, M., Nõlvak, H., Ligi, T., & Preem, J. K. (2016). Dynamics of bacterial community abundance and structure in horizontal subsurface flow wetland mesocosms treating municipal wastewater. Water, 8, 457.

    Article  Google Scholar 

  • Reddy, K. R., & Graetz, D. A. (1988). Carbon and nitrogen dynamics in wetland soils. In D. D. Hook (Ed.), Ecology and management of wetlands. Ecology of Wetlands Portland (pp. 307–318). Portland: Timber Press.

    Google Scholar 

  • Reddy, G. B., Hunt, P. G., Phillips, R., Stone, K., & Grubbs, A. (2001). Treatment of swine wastewater in marsh-pond-marsh constructed wetlands. Water Science and Technology, 44, 545–550.

    Article  CAS  Google Scholar 

  • Richardson, C. J. (1985). Mechanisms controlling phosphorus retention capacity in freshwater wetlands. Science, 228, 1424–1427.

    Article  CAS  Google Scholar 

  • Scholz, M., & Lee, B. H. (2005). Constructed wetlands: A review. International Journal of Environmental Studies, 62, 1256–1261.

    Google Scholar 

  • Sundberg, C., Tonderski, K., & Lindgren, P. E. (2007). Potential nitrification and denitrification and the corresponding composition of the bacterial communities in a compact constructed wetland treating landfill leachates. Water Science and Technology, 56, 159–166.

    Article  CAS  Google Scholar 

  • Symonds, E. M., Verbyla, M. E., Lukasik, J. O., Kafle, R. C., Breitbart, M., & Mihelcic, J. R. (2014). A case study of enteric virus removal and insights into the associated risk of water reuse for two wastewater treatment pond systems in Bolivia. Water Research, 65, 257–270.

    Article  CAS  Google Scholar 

  • Truu, J., Nurk, K., Juhanson, J., & Mander, U. (2005). Variation of microbiological parameters within planted soil filter for domestic wastewater treatment. Journal of Environmental Science and Health. Part A, Toxic/Hazardous Substances & Environmental Engineering, 40, 1191–1200.

    Article  CAS  Google Scholar 

  • US EPA. (2000). Constructed wetlands treatment of municipal wastewaters (1st ed.). Cincinnati: United States Environmental Protection Agency.

    Google Scholar 

  • Vymazal, J. (2005). Horizontal sub-surface flow and hybrid constructed wetlands systems for wastewater treatment. Ecological Engineering, 25(1), 478–490.

    Article  Google Scholar 

  • Vymazal, J. (2007). Removal of nutrients in various types of constructed wetlands. Science of the Total Environment, 380(1–3), 48–65.

    Article  CAS  Google Scholar 

  • Walbridge, M. R., & Struthers, J. P. (1993). Phosphorus retention in non-tidal palustrine forested wetlands of the Mid-Atlantic region. Wetlands, 13(2), 84–94.

    Article  Google Scholar 

  • Wang, Y., Hayatsu, M., & Fujii, T. (2012). Extraction of bacterial RNA from soil: Challenges and solutions. Microbes and Environments, 27, 111–121.

    Article  CAS  Google Scholar 

  • Wassel, R. A., & Mills, A. L. (1983). Changes in water and sediment bacterial community structure in a lake receiving acid-mine drainage. Microbial Ecology, 9, 155–169.

    Article  CAS  Google Scholar 

  • Weber, K. P., Mitzel, M. R., Slawson, R. M., & Legge, R. L. (2011). Effect of ciprofloxacin on microbiological development in wetland mesocosms. Water Research, 45, 3185–3196.

    Article  CAS  Google Scholar 

  • Wetzel, R. G. (1993). Constructed wetlands: Scientific foundations are critical. In G. A. Moshiri (Ed.), Constructed wetlands for water quality improvement (pp. 3–7). Boca Raton: CRC Press.

    Google Scholar 

  • Wu, S., Carvalho, P. N., Muller, J. A., Manoj, V. R., & Dong, R. (2016). Sanitation in constructed wetlands: A review on the removal of human pathogens and fecal indicators. Science of the Total Environment, 541, 8–22.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kaushal, M., Wani, S.P., Patil, M.D. (2019). Harnessing Microbial Potential for Wastewater Treatment in Constructed Wetlands. In: Shah, S., Venkatramanan, V., Prasad, R. (eds) Sustainable Green Technologies for Environmental Management. Springer, Singapore. https://doi.org/10.1007/978-981-13-2772-8_14

Download citation

Publish with us

Policies and ethics