Skip to main content

Microbial Biofortification: A Green Technology Through Plant Growth Promoting Microorganisms

  • Chapter
  • First Online:

Abstract

The hidden hunger or malnutrition is considered to be the most dignified global challenge to human kind. Malnutrition afflicts approximately more than one billion of world’s population in both developed and developing countries. Malnutrition includes diet related chronic diseases as well as overt nutrient deficiencies which leads to morbidity, reduced physical and mental growth. However, strategies to enhance supplementation of mineral elements and food fortification have not always been successful. Plant growth promoting microorganisms are known to fortify micro- and macro-nutrient contents in staple food crops through various mechanisms such as siderophore production, zinc solubilization, nitrogen fixation, phosphate solubilization, etc. Inoculation of potential microorganisms along with mineral fertilizers can increase the uptake of mineral elements, yield and growth. Therefore, biofortification of staple food crops by the implications of plant growth promoting microorganisms has an ability to attain mineral elements, is advocated as novel strategy not only to increase concentration of micronutrient in edible food crops but also to improve yields on less fertile soils.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alemu, F. (2013). Isolation of Pseudomonas fluorescens from rhizospheric soil of faba bean and assessment of their phosphate solubility: In vitro study, Ethiopia. Scholars Academic Journal of Biosciences, 1(7), 346–351.

    Google Scholar 

  • Bagali, S. S. (2012). Review: Nitrogen fixing microorganisms. International Journal of Microbiology, 3(1), 46–52.

    Google Scholar 

  • Beattie, G. A. (2006). Plant-associated bacteria: Survey, molecular phylogeny, genomics and recent advances. In S. S. Gnanamanickam (Ed.), Plant-associated bacteria (pp. 1–56). Dordrecht: Springer.

    Google Scholar 

  • Black, R. E. (2014). Global distribution and disease burden related to micronutrient deficiencies. Nestle Nutrition Institute Workshop Series, 78, 21–28.

    Article  Google Scholar 

  • Bonfante, P., & Genre, A. (2015). Arbuscular mycorrhizal dialogues: Do you speak ‘plantish’ or ‘fungish’? Trends in Plant Science, 20, 150–154.

    Article  CAS  Google Scholar 

  • Burkert, B., & Robson, A. (1994). Zn uptake in subterranean clover (Trifolium subterraneum L.) by three vesicular-arbuscular mycorrhizal fungi in a root-free sandy soil. Soil Biology and Biochemistry, 26, 1117–1124.

    Article  Google Scholar 

  • Das, A., Prasad, R., Srivastava, A., Giang, P. H., Bhatnagar, K., & Varma, A. (2007). Fungal siderophores: Structure, functions and regulations. In A. Varma & S. B. Chincholkar (Eds.), Microbial siderophores (pp. 1–42). Berlin/Heidelberg: Springer.

    Google Scholar 

  • Durán, P., Acuña, J. J., Armada, E., López-Castillo, O. M., Cornejo, P., Mora, M. L., & Azcón, R. (2016). Inoculation with selenobacteria and arbuscular mycorrhizal fungi to enhance selenium content in lettuce plants and improve tolerance against drought stress. Journal of Soil Science and Plant Nutrition, 16(1), 211–225.

    Google Scholar 

  • Fasim, F., Ahmed, N., Parsons, R., & Gadd, G. M. (2002). Solubilization of zinc salts by a bacterium isolated from the air environment of a tannery. FEMS Microbiology Letters, 213(1), 1–6.

    Article  CAS  Google Scholar 

  • Gadd, G. M. (2010). Metals, minerals and microbes: Geo-microbiology and bioremediation. Microbiology, 156(Pt 3), 609–643.

    Article  CAS  Google Scholar 

  • Gupta, R. K., Kaushik, S., Sharma, P., & Jain, V. K. (2003). Biofertilizers: An ecofriendly alternative to chemical fertilizers. In A. Kumar (Ed.), Environmental challenge of 21th century (pp. 275–287). New Delhi: APH Publication Corporation.

    Google Scholar 

  • Hatfield, D. L., Tsuji, P. A., Carlson, B. A., & Gladyshev, V. N. (2014). Selenium and selenocysteine: Roles in cancer, health, and development. Trends in Biochemical Sciences, 39(3), 112–120.

    Article  CAS  Google Scholar 

  • Hirpara, D. G., Gajera, H. P., Hirpara, H. Z., & Golakiya, B. A. (2017). Antipathy of Trichoderma against Sclerotium rolfsii Sacc.: Evaluation of cell wall-degrading enzymatic activities and molecular diversity analysis of antagonists. Journal of Molecular Microbiology and Biotechnology, 27, 22–28.

    Article  CAS  Google Scholar 

  • Hirschi, K. D. (2009). Nutrient biofortification of food crops. Annual Review of Nutrition, 29, 401–421.

    Article  CAS  Google Scholar 

  • Jones, M. D., Durall, D. M., & Tinker, P. B. (1998). A comparison of arbuscular and ectomycorrhizal Eucalyptus coccifera: Growth response, phosphorus uptake efficiency and external hyphal production. New Phytologist, 140(1), 125–134.

    Article  Google Scholar 

  • Kamilova, F., Validov, S., Azarova, T., Mulders, I., & Lugtenberg, B. (2005). Enrichment for enhanced competitive plant root tip colonizers selects for a new class of biocontrol bacteria. Environmental Microbiology, 7, 1809–1817.

    Article  CAS  Google Scholar 

  • Kang, S. M., Radhakrishnan, R., You, Y. H., Joo, G. J., Lee, I. J., Lee, K. E., & Kim, J. H. (2014). Phosphate solubilizing Bacillus megaterium mj1212 regulates endogenous plant carbohydrates and amino acids contents to promote mustard plant growth. Indian Journal of Microbiology, 54(4), 427–433.

    Article  CAS  Google Scholar 

  • Khan, A. G. (2005). Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation. Journal of Trace Elements in Medicine and Biology, 18(4), 355–364.

    Article  CAS  Google Scholar 

  • Kumar, A., & Bohra, C. (2006). Green technology in relation to sustainable agriculture. In Green technologies for sustainable agriculture. New Delhi: Daya Publishing House.

    Google Scholar 

  • Lal, R., & Greenland, D. J. (1979). Soil physical properties and crop production. Chichester: Wiley.

    Google Scholar 

  • Leong, S. A., & Neilands, J. B. (1982). Siderophore production by phytopathogenic microbial species. Archives of Biochemistry and Biophysics, 281, 351–359.

    Article  Google Scholar 

  • Maksimov, I. V., Abizgil’dina, R. R., & Pusenkova, L. I. (2011). Plant growth promoting rhizobacteria as alternative to chemical crop protectors from pathogens. Applied Biochemistry and Microbiology, 47, 333–345.

    Article  CAS  Google Scholar 

  • Malhi, S. S., Vera, C. L., & Brandt, S. A. (2013). Relative effectiveness of organic and inorganic nutrient sources in improving yield, seed quality and nutrient uptake of canola. Agricultural Sciences, 4(12), 1–18.

    Article  Google Scholar 

  • Murray-Kolb, L. E. (2013). Iron and brain functions. Current Opinion in Clinical Nutrition and Metabolic Care, 16(6), 703–707.

    Article  CAS  Google Scholar 

  • Newell, M. M. (2008). Nutritionally improved agricultural crops. Plant Physiology, 147, 939–953.

    Article  Google Scholar 

  • Prasad, R., Shivay, Y. S., & Kumar, D. (2014). Agronomic biofortification in cereal of cereal grains with iron and zinc. Advances in Agronomy, 125, 55–91.

    Article  Google Scholar 

  • Prasad, R., Kumar, M., & Varma, A. (2015). Role of PGPR in soil fertility and plant health. In D. Egamberdieva, S. Shrivastava, & A. Varma (Eds.), Plant growth-promoting rhizobacteria (PGPR) and medicinal plants (pp. 247–260). Cham: Springer.

    Google Scholar 

  • Puyam, A. (2016). Advent of Trichoderma as a bio-control agent – A review. Journal of Applied and Natural Sciences, 8(2), 1100–1109.

    Article  Google Scholar 

  • Rana, A., Joshi, M., Prasanna, R., Shivay, Y. S., & Nain, L. (2012). Biofortification of wheat through inoculation of plant growth promoting rhizobacteria and cyanobacteria. The European Journal of Soil Biology, 50, 118–126.

    Article  CAS  Google Scholar 

  • Rengel, Z., Batten, G. D., & Crowley, D. E. (1999). Agronomic approaches for improving the micronutrient density in edible portions of field crops. Field Crops Research, 60, 27–40.

    Article  Google Scholar 

  • Sahebani, N., & Hadavi, N. (2008). Biological control of the root-knot nematode Meloidogyne javanica by Trichoderma harzianum. Soil Biology and Biochemistry, 40, 2016–2020.

    Article  CAS  Google Scholar 

  • Salgueiro, M. J., Zubillaga, M., Lysionek, A., Cremaschi, G., Goldman, C. G., Caro, R., De Paoli, T., Hager, A., Weill, R., & Boccio, J. (2000). Zinc status and immune system relationship: A review. Biological Trace Element Research, 76(3), 193–205.

    Article  CAS  Google Scholar 

  • Saravanan, V. S., Subramoniam, S. R., & Raj, S. A. (2004). Assessing in vitro solubilization potential of different zinc solubilizing bacterial (zsb) isolates. Brazilian Journal of Microbiology, 35(1–2), 121–125.

    Article  CAS  Google Scholar 

  • Shaikh, S. S., & Sayyed, R. Z. (2015). Role of plant growth-promoting rhizobacteria and their formulation in biocontrol of plant diseases. In Plant microbes symbiosis: Applied facets (pp. 337–351). New Delhi: Springer.

    Google Scholar 

  • Sharma, P., Aggarwal, P., & Kaur, A. (2016). Biofortification: A new approach to eradicate hidden hunger. Food Reviews International, 33(1), 1–21.

    Article  Google Scholar 

  • Shuman, L. M. (1998). Micronutrient fertilizers. Journal of Crop Production, 1, 165–195.

    Article  CAS  Google Scholar 

  • Singh, A. V., & Prasad, B. (2014). Enhancement of plant growth, nodulation and seed yield through plant growth promoting rhizobacteria in lentil (Lens culinaris Medik cv. VL125). International Journal of Current Microbiology and Applied Sciences, 3(6), 614–622.

    Google Scholar 

  • Singh, J., & Singh, A. V. (2017). Microbial strategies for enhanced phytoremediation of heavy metals contaminated soils. In R. N. Bharagava (Ed.), Environmental pollutants and their bioremediation approaches (Vol. 9, pp. 249–264). Boca Raton: Taylor & Francis.

    Google Scholar 

  • Singh, A. V., Shah, S., & Prasad, B. (2010). Effect of phosphate solubilizing bacteria on plant growth promotion and nodulation in soybean (Glycine max (L.) Merr). Journal of Hill Agriculture, 1(1), 35–39.

    CAS  Google Scholar 

  • Singh, A. V., Chandra, R., & Reeta, G. (2013). Phosphate solubilization by Chryseobacterium sp. and their combined effect with N and P fertilizers on plant growth promotion. Archives of Agronomy and Soil Science, 59(5), 641–651.

    Article  CAS  Google Scholar 

  • Singh, J., Singh, A. V., Prasad, & Shah, S. (2017). Sustainable agriculture strategies of wheat biofortification through microorganisms. In A. Kumar, A. Kumar, & B. Prasad (Eds.), Wheat a premier food crop. New Delhi: Kalyani Publishers.

    Google Scholar 

  • Singh, A. V., Prasad, B., & Goel, R. (2018). Plant growth promoting efficiency of phosphate solubilizing Chryseobacterium sp. PSR 10 with different doses of N and P fertilizers on Lentil (Lens culinaris var. PL-5) growth and yield. International Journal of Current Microbiology and Applied Sciences, 7(05), 2280–2289.

    Article  Google Scholar 

  • Srivastava, M. P., Tewari, R., & Sharma, N. (2013). Effect of different cultural variables on siderophores produced by Trichoderma spp. International Journal of Advanced Research, 1, 1–6.

    Google Scholar 

  • Subramanian, K. S., Tenshia, V., Jayalakshmi, K., & Ramachandran, V. (2009). Role of arbuscular mycorrhizal fungus (Glomus intraradices)–(fungus aided) in zinc nutrition of maize. Journal of Agricultural Biotechnology and Sustainable Development, 1, 29–38.

    CAS  Google Scholar 

  • United Nations System Standing Committee on Nutrition (UNSSCN). (2004). 5th report on the world nutrition situation nutrition for improved development outcomes. Geneva: SCN.

    Google Scholar 

  • Vaishampayan, A., Sinha, R. P., Hader, D. P., Dey, T., Gupta, A. K., Bhan, U., & Rao, A. L. (2001). Cyanobacterial biofertilizers in rice agriculture. The Botanical Review, 67(4), 453–516.

    Article  Google Scholar 

  • Van Loon, L. C., Bakker, P. A. H. M., & Pieterse, C. M. J. (1998). Systemic resistance induced by rhizosphere bacteria. Annual Review of Phytopathology, 36, 453–483.

    Article  Google Scholar 

  • Wandersman, C., & Delepelaire, P. (2004). Bacterial iron sources: From siderophores to hemophores. Annual Review of Microbiology, 58, 611–647.

    Article  CAS  Google Scholar 

  • Whiting, S. N., de Souza, M. P., & Terry, N. (2001). Rhizosphere bacteria mobilize Zn for hyperaccumulation by Thlaspi caerulescens. Environmental Science & Technology, 35, 3144–3150.

    Article  CAS  Google Scholar 

  • Woo, S. L., Donzelli, B., Scala, F., Mach, R. L., Harman, G. E., Kubicek, C. P., Del Sorbo, G., & Lorito, M. (1999). Disruption of the ech42 (endochitinase-encoding) gene affects biocontrol activity in Trichoderma harzianum P1. Molecular Plant-Microbe Interactions, 12, 419–429.

    Article  CAS  Google Scholar 

  • Yadav, R., Singh, A. V., Kumar, M., & Yadav, S. (2016). Phytochemical analysis andplant growth promoting properties of endophytic fungi isolated from tulsi and Aloe vera. International Journal of Agricultural and Statistics Sciences, 12(1), 239–248.

    Google Scholar 

  • Yao, A. V., Bochow, H., Karimov, S., Boturov, U., Sanginboy, S., & Sharipov, A. K. (2006). Effect of FZB 24® Bacillus subtilis as a biofertilizer on cotton yields in field tests. Archives of Phytopathology and Plant Protection, 39(4), 323–328.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khan, A., Singh, J., Upadhayay, V.K., Singh, A.V., Shah, S. (2019). Microbial Biofortification: A Green Technology Through Plant Growth Promoting Microorganisms. In: Shah, S., Venkatramanan, V., Prasad, R. (eds) Sustainable Green Technologies for Environmental Management. Springer, Singapore. https://doi.org/10.1007/978-981-13-2772-8_13

Download citation

Publish with us

Policies and ethics