Skip to main content

Medical Treatment Strategy for Glaucoma

  • Chapter
  • First Online:
Medical Treatment of Glaucoma

Abstract

Glaucoma physicians frequently face dilemmas generated by atypical or complicated cases and must answer questions such as “yes or no,” “treat or wait,” “medication or surgery,” and “switch or add.” There are no gold standard answers to these questions. Treatment decisions are usually based on comprehensive evaluation of the type and stage of the disease, medical history, general condition, life habits, and life expectancy of the particular patient. Because glaucoma is a chronic, progressive disease that persists throughout patients’ lives, therapy should be always considered from long-term and holistic views.

Primary open-angle glaucoma and primary angle-closure glaucoma are the two most important types of primary glaucoma. Although they share characteristics, especially in the relatively advanced stages, they have completely different pathogeneses, leading to different treatment strategies. In the first part of this chapter, we discuss basic questions about the principles of medical treatment for glaucoma, such as the goals for therapy, when to start treatment, how to choose medications, and to what extent we should treat.

Due to the particular anatomical and physiological structure of the eye, ocular drug delivery remains a significant challenge because of various barriers that protect the eye from harmful exterior substances and also therapeutics. Currently, drug delivery methods for ocular diseases can be divided into topical and systemic administration. Topical delivery is used more common than systemic delivery in glaucoma treatment, mainly because of its convenience and high level of patient compliance. In the second part of this chapter, we discuss barriers and absorption routes for ocular drug delivery. More importantly, we summarize delivery methods for various glaucoma therapy drugs in clinic settings, both topical and systemic methods.

Y. Chen and K. Jiang made equal contributions to this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. European glaucoma society terminology and guidelines for glaucoma, 4th Edition - chapter 3: treatment principles and options supported by the EGS foundation: part 1: foreword; Introduction; glossary; chapter 3 treatment principles and options. Br J Ophthalmol. 2017;101(6):130–95.

    Google Scholar 

  2. Heijl A, et al. Reduction of intraocular pressure and glaucoma progression: results from the Early Manifest Glaucoma Trial. Arch Ophthalmol. 2002;120(10):1268–79.

    Article  PubMed  Google Scholar 

  3. Netland PA. Glaucoma medical therapy principles and management. Oxford: Oxford University Press In cooperation with The American Academy of Ophthalmology; 2008.

    Google Scholar 

  4. Prum BE Jr, et al. Primary open-angle glaucoma suspect preferred practice pattern (®) guidelines. Ophthalmology. 2016;123(1):P112–51.

    Article  PubMed  Google Scholar 

  5. Prum BE Jr, et al. Primary angle closure preferred practice pattern(®) guidelines. Ophthalmology. 2016;123(1):P1–P40.

    Article  PubMed  Google Scholar 

  6. Sun X, et al. Primary angle closure glaucoma: what we know and what we don’t know. Prog Retin Eye Res. 2017;57:26–45.

    Article  PubMed  Google Scholar 

  7. Wilensky JT, et al. Follow-up of angle-closure glaucoma suspects. Am J Ophthalmol. 1993;115(3):338–46.

    Article  CAS  PubMed  Google Scholar 

  8. Thomas R, et al. Five year risk of progression of primary angle closure suspects to primary angle closure: a population based study. Br J Ophthalmol. 2003;87(4):450–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bain WE. The fellow eye in acute closed-angle glaucoma. Br J Ophthalmol. 1957;41(4):193–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lowe RF. Acute angle-closure glaucoma: the second eye: an analysis of 200 cases. Br J Ophthalmol. 1962;46(11):641–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Saw SM, Gazzard G, Friedman DS. Interventions for angle-closure glaucoma: an evidence-based update. Ophthalmology. 2003;110(10):1869–78. quiz 1878–9, 1930.

    Article  PubMed  Google Scholar 

  12. Ang LP, Aung T, Chew PT. Acute primary angle closure in an Asian population: long-term outcome of the fellow eye after prophylactic laser peripheral iridotomy. Ophthalmology. 2000;107(11):2092–6.

    Article  CAS  PubMed  Google Scholar 

  13. European Glaucoma Society Terminology and Guidelines for Glaucoma. 4th edition - chapter 2: classification and terminology supported by the EGS foundation: part 1: foreword; introduction; glossary; chapter 2 classification and terminology. Br J Ophthalmol. 2017;101(5):73–127.

    Article  Google Scholar 

  14. Kass MA, et al. The Ocular Hypertension Treatment Study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. Arch Ophthalmol. 2002;120(6):701–13. discussion 829–30.

    Article  PubMed  Google Scholar 

  15. Stewart WC, et al. Cost-effectiveness of treating ocular hypertension. Ophthalmology. 2008;115(1):94–8.

    Article  PubMed  Google Scholar 

  16. Hitchings RA. A practical approach to the management of normal tension glaucoma. In: Essentials in ophthalmology: glaucoma. Berlin: Springer; 2004. p. 147–56.

    Google Scholar 

  17. Drance S, Anderson DR, Schulzer M. Risk factors for progression of visual field abnormalities in normal-tension glaucoma. Am J Ophthalmol. 2001;131(6):699–708.

    Article  CAS  PubMed  Google Scholar 

  18. Barton K, Hitchings RA. In: Budenz DL, editor. Medical Management of Glaucoma. Manchester: Springer Healthcare; 2013.

    Chapter  Google Scholar 

  19. Hughes E, Spry P, Diamond J. 24-hour monitoring of intraocular pressure in glaucoma management: a retrospective review. J Glaucoma. 2003;12(3):232–6.

    Article  PubMed  Google Scholar 

  20. Wilensky JT, et al. Self-tonometry to manage patients with glaucoma and apparently controlled intraocular pressure. Arch Ophthalmol. 1987;105(8):1072–5.

    Article  CAS  PubMed  Google Scholar 

  21. Liu JH, Weinreb RN. Monitoring intraocular pressure for 24 h. Br J Ophthalmol. 2011;95(5):599–600.

    Article  PubMed  Google Scholar 

  22. Mansouri K, Shaarawy T. Continuous intraocular pressure monitoring with a wireless ocular telemetry sensor: initial clinical experience in patients with open angle glaucoma. Br J Ophthalmol. 2011;95(5):627–9.

    Article  PubMed  Google Scholar 

  23. Leske MC, et al. Factors for glaucoma progression and the effect of treatment: the early manifest glaucoma trial. Arch Ophthalmol. 2003;121(1):48–56.

    Article  PubMed  Google Scholar 

  24. Jay JL, Allan D. The benefit of early trabeculectomy versus conventional management in primary open angle glaucoma relative to severity of disease. Eye (Lond). 1989;3(Pt 5):528–35.

    Article  Google Scholar 

  25. Migdal C, Gregory W, Hitchings R. Long-term functional outcome after early surgery compared with laser and medicine in open-angle glaucoma. Ophthalmology. 1994;101(10):1651–6. discussion 1657.

    Article  CAS  PubMed  Google Scholar 

  26. The Glaucoma Laser Trial (GLT) and glaucoma laser trial follow-up study: 7. Results. Glaucoma Laser Trial Research Group. Am J Ophthalmol. 1995;120(6):718–31.

    Google Scholar 

  27. Lichter PR, et al. Interim clinical outcomes in the Collaborative Initial Glaucoma Treatment Study comparing initial treatment randomized to medications or surgery. Ophthalmology. 2001;108(11):1943–53.

    Article  CAS  PubMed  Google Scholar 

  28. Hedman K, Larsson LI. The effect of latanoprost compared with timolol in African-American, Asian, Caucasian, and Mexican open-angle glaucoma or ocular hypertensive patients. Surv Ophthalmol. 2002;47(Suppl 1):S77–89.

    Article  PubMed  Google Scholar 

  29. Netland PA, et al. Travoprost compared with latanoprost and timolol in patients with open-angle glaucoma or ocular hypertension. Am J Ophthalmol. 2001;132(4):472–84.

    Article  CAS  PubMed  Google Scholar 

  30. Brandt JD, et al. Comparison of once- or twice-daily bimatoprost with twice-daily timolol in patients with elevated IOP: a 3-month clinical trial. Ophthalmology. 2001;108(6):1023–31. discussion 1032.

    Article  CAS  PubMed  Google Scholar 

  31. Fechtner RD, Realini T. Fixed combinations of topical glaucoma medications. Curr Opin Ophthalmol. 2004;15(2):132–5.

    Article  PubMed  Google Scholar 

  32. Heijl A, et al. Rates of visual field progression in clinical glaucoma care. Acta Ophthalmol. 2013;91(5):406–12.

    Article  PubMed  Google Scholar 

  33. Heijl A, et al. Natural history of open-angle glaucoma. Ophthalmology. 2009;116(12):2271–6.

    Article  PubMed  Google Scholar 

  34. Leske MC, et al. Predictors of long-term progression in the early manifest glaucoma trial. Ophthalmology. 2007;114(11):1965–72.

    Article  PubMed  Google Scholar 

  35. Jampel HD. Target pressure in glaucoma therapy. J Glaucoma. 1997;6(2):133–8.

    Article  CAS  PubMed  Google Scholar 

  36. Heijl A, et al. Measuring visual field progression in the Early Manifest Glaucoma Trial. Acta Ophthalmol Scand. 2003;81(3):286–93.

    Article  PubMed  Google Scholar 

  37. Yu M, et al. Risk of visual field progression in glaucoma patients with progressive retinal nerve fiber layer thinning: a 5-year prospective study. Ophthalmology. 2016;123(6):1201–10.

    Article  PubMed  Google Scholar 

  38. Fitzke FW, et al. Analysis of visual field progression in glaucoma. Br J Ophthalmol. 1996;80(1):40–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Leung CK, et al. Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: patterns of retinal nerve fiber layer progression. Ophthalmology. 2012;119(9):1858–66.

    Article  PubMed  Google Scholar 

  40. Sung KR, et al. Progression detection capability of macular thickness in advanced glaucomatous eyes. Ophthalmology. 2012;119(2):308–13.

    Article  PubMed  Google Scholar 

  41. The Advanced Glaucoma Intervention Study (AGIS): 7. The relationship between control of intraocular pressure and visual field deterioration. The AGIS Investigators. Am J Ophthalmol. 2000;130(4):429–40.

    Google Scholar 

  42. Musch DC, et al. Visual field progression in the Collaborative Initial Glaucoma Treatment Study the impact of treatment and other baseline factors. Ophthalmology. 2009;116(2):200–7.

    Article  PubMed  Google Scholar 

  43. Nouri-Mahdavi K, et al. Predictive factors for glaucomatous visual field progression in the Advanced Glaucoma Intervention Study. Ophthalmology. 2004;111(9):1627–35.

    Article  PubMed  Google Scholar 

  44. Martus P, et al. Predictive factors for progressive optic nerve damage in various types of chronic open-angle glaucoma. Am J Ophthalmol. 2005;139(6):999–1009.

    Article  PubMed  Google Scholar 

  45. Tezel G, et al. Clinical factors associated with progression of glaucomatous optic disc damage in treated patients. Arch Ophthalmol. 2001;119(6):813–8.

    Article  CAS  PubMed  Google Scholar 

  46. Stewart WC, et al. Factors associated with long-term progression or stability in primary open-angle glaucoma. Am J Ophthalmol. 2000;130(3):274–9.

    Article  CAS  PubMed  Google Scholar 

  47. Daugeliene L, Yamamoto T, Kitazawa Y. Risk factors for visual field damage progression in normal-tension glaucoma eyes. Graefes Arch Clin Exp Ophthalmol. 1999;237(2):105–8.

    Article  CAS  PubMed  Google Scholar 

  48. Suh MH, et al. Glaucoma progression after the first-detected optic disc hemorrhage by optical coherence tomography. J Glaucoma. 2012;21(6):358–66.

    Article  PubMed  Google Scholar 

  49. Medeiros FA, et al. Corneal thickness as a risk factor for visual field loss in patients with preperimetric glaucomatous optic neuropathy. Am J Ophthalmol. 2003;136(5):805–13.

    Article  PubMed  Google Scholar 

  50. Kim JW, Chen PP. Central corneal pachymetry and visual field progression in patients with open-angle glaucoma. Ophthalmology. 2004;111(11):2126–32.

    Article  PubMed  Google Scholar 

  51. Jonas JB, et al. Central corneal thickness correlated with glaucoma damage and rate of progression. Invest Ophthalmol Vis Sci. 2005;46(4):1269–74.

    Article  PubMed  Google Scholar 

  52. Medeiros FA, et al. Corneal hysteresis as a risk factor for glaucoma progression: a prospective longitudinal study. Ophthalmology. 2013;120(8):1533–40.

    Article  PubMed  Google Scholar 

  53. Jonas JB, et al. Predictive factors of the optic nerve head for development or progression of glaucomatous visual field loss. Invest Ophthalmol Vis Sci. 2004;45(8):2613–8.

    Article  PubMed  Google Scholar 

  54. Charlson ME, et al. Nocturnal systemic hypotension increases the risk of glaucoma progression. Ophthalmology. 2014;121(10):2004–12.

    Article  PubMed  Google Scholar 

  55. Armaly MF, et al. Biostatistical analysis of the collaborative glaucoma study. I. Summary report of the risk factors for glaucomatous visual-field defects. Arch Ophthalmol. 1980;98(12):2163–71.

    Article  CAS  PubMed  Google Scholar 

  56. Asrani S, et al. Large diurnal fluctuations in intraocular pressure are an independent risk factor in patients with glaucoma. J Glaucoma. 2000;9(2):134–42.

    Article  CAS  PubMed  Google Scholar 

  57. Nouri-Mahdavi K, Medeiros FA, Weinreb RN. Fluctuation of intraocular pressure as a predictor of visual field progression. Arch Ophthalmol. 2008;126(8):1168–9. author reply 1169–70.

    Article  PubMed  Google Scholar 

  58. Caprioli J, Coleman AL. Intraocular pressure fluctuation a risk factor for visual field progression at low intraocular pressures in the advanced glaucoma intervention study. Ophthalmology. 2008;115(7):1123–1129.e3.

    Article  PubMed  Google Scholar 

  59. Bengtsson B, et al. Fluctuation of intraocular pressure and glaucoma progression in the early manifest glaucoma trial. Ophthalmology. 2007;114(2):205–9.

    Article  PubMed  Google Scholar 

  60. Gordon MO, et al. Validated prediction model for the development of primary open-angle glaucoma in individuals with ocular hypertension. Ophthalmology. 2007;114(1):10–9.

    Article  PubMed  Google Scholar 

  61. Hughes PM, Olejnik O, Chang-Lin JE, et al. Topical and systemic drug delivery to the posterior segments. Adv Drug Deliv Rev. 2005;57(14):2010–32.

    Article  CAS  PubMed  Google Scholar 

  62. Hosoya K, Lee VHL, Kim KJ. Roles of the conjunctiva in ocular drug delivery: a review of conjunctival transport mechanisms and their regulation. Eur J Pharm Biopharm. 2005;60(2):227–40.

    Article  CAS  PubMed  Google Scholar 

  63. Baudouin C, Labbé A, Liang H, et al. Preservatives in eyedrops: the good, the bad and the ugly. Prog Retin Eye Res. 2010;29(4):312–34.

    Article  CAS  PubMed  Google Scholar 

  64. Jaissle GB, Szurman P, Bartz-Schmidt KU. Ocular side effects and complications of intravitreal triamcinolone acetonide injection. Der Ophthalmologe: Zeitschrift der Deutschen Ophthalmologischen Gesellschaft. 2004;101(2):121–8.

    Article  CAS  Google Scholar 

  65. Lux A, Maier S, Dinslage S, et al. A comparative bioavailability study of three conventional eye drops versus a single lyophilisate. Br J Ophthalmol. 2003;87(4):436–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Holló G, Bozkurt B, Irkec M. Brinzolamide/timolol fixed combination: a new ocular suspension for the treatment of open-angle glaucoma and ocular hypertension. Expert Opin Pharmacother. 2009;10(12):2015–24.

    Article  PubMed  CAS  Google Scholar 

  67. Prasad D, Chauhan H. Excipients utilized for ophthalmic drug delivery systems. In: Pathak Y, Sutariya V, Hirani AA, editors. Nano-biomaterials for ophthalmic drug delivery. Basel: Springer; 2016. p. 555–82.

    Chapter  Google Scholar 

  68. Vashist A, Vashist A, Gupta YK, et al. Recent advances in hydrogel based drug delivery systems for the human body. J Mater Chem B. 2014;2(2):147–66.

    Article  CAS  PubMed  Google Scholar 

  69. Saini R, Saini S, Singh G, et al. In situ gels-a new trends in ophthalmic drug delivery system. Int J Pharm Sci Res. 2015;6:386–90.

    Google Scholar 

  70. Tártara LI, Quinteros DA, Saino V, et al. Improvement of acetazolamide ocular permeation using ascorbyl laurate nanostructures as drug delivery system. J Ocul Pharmacol Ther. 2012;28(2):102–9.

    Article  PubMed  CAS  Google Scholar 

  71. Holden CA, Tyagi P, Thakur A, et al. Polyamidoamine dendrimer hydrogel for enhanced delivery of antiglaucoma drugs. Nanomedicine. 2012;8(5):776–83.

    Article  CAS  PubMed  Google Scholar 

  72. Farid RM, El-Salamouni NS, El-Kamel AH, et al. Lipid-based nanocarriers for ocular drug delivery. In: Andronescu E, Grumezescu AM, editors. Nanostructures for drug delivery; 2017. p. 495–522.

    Chapter  Google Scholar 

  73. Panatieri LF, Brazil NT, Faber K, et al. Nanoemulsions containing a coumarin-rich extract from Pterocaulon balansae (Asteraceae) for the treatment of ocular acanthamoeba keratitis. AAPS PharmSciTech. 2017;18(3):721–8.

    Article  CAS  PubMed  Google Scholar 

  74. Kassem MA, Rahman AAA, Ghorab MM, et al. Nanosuspension as an ophthalmic delivery system for certain glucocorticoid drugs. Int J Pharm. 2007;340(1):126–33.

    Article  CAS  PubMed  Google Scholar 

  75. Vandervoort J, Ludwig A. Ocular drug delivery: nanomedicine applications. Nanomedicine. 2007;2(1):11–21.

    Article  CAS  PubMed  Google Scholar 

  76. Alvarez-Trabado J, Diebold Y, Sanchez A. Designing lipid nanoparticles for topical ocular drug delivery. Int J Pharm. 2017;532(1):204–17.

    Article  CAS  PubMed  Google Scholar 

  77. Tsukamoto T, Hironaka K, Fujisawa T, et al. Preparation of bromfenac-loaded liposomes modified with chitosan for ophthalmic drug delivery and evaluation of physicochemical properties and drug release profile. Asian J Pharm Sci. 2013;8(2):104–9.

    Article  CAS  Google Scholar 

  78. Patidar S, Jain S. Non ionic surfactant based vesicles (niosomes) containing flupirtine maleate as an ocular drug delivery system. J Chem Pharm Res. 2012;4(10):4495–500.

    CAS  Google Scholar 

  79. Cholkar K, Patel A, Dutt Vadlapudi A, et al. Novel nanomicellar formulation approaches for anterior and posterior segment ocular drug delivery. Recent Pat Nanomed. 2012;2(2):82–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kambhampati SP. Dendrimer based nanotherapeutics for ocular drug delivery. Ph.D. dissertation, Wayne State University, Detroit; 2014.

    Google Scholar 

  81. Nabih Maria D, Mishra SR, Wang L, et al. Water-soluble complex of curcumin with cyclodextrins: enhanced physical properties for ocular drug delivery. Curr Drug Deliv. 2017;14(6):875–86.

    Google Scholar 

  82. Maulvi FA, Soni TG, Shah DO. A review on therapeutic contact lenses for ocular drug delivery. Drug Deliv. 2016;23(8):3017–26.

    Article  CAS  PubMed  Google Scholar 

  83. Bengani LC, Hsu KH, Gause S, et al. Contact lenses as a platform for ocular drug delivery. Expert Opin Drug Deliv. 2013;10(11):1483–96.

    Article  CAS  PubMed  Google Scholar 

  84. North DP. Treatment of acute glaucoma. Can Med Assoc J. 1971;105(6):561.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Kaufman HE, Uotila MH, Gasset AR, et al. The medical uses of soft contact lenses. Trans Am Acad Ophthalmol Otolaryngol. 1971;75(2):361–73.

    CAS  PubMed  Google Scholar 

  86. Hillman JS. Management of acute glaucoma with pilocarpine-soaked hydrophilic lens. Br J Ophthalmol. 1974;58(7):674.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Peng CC, Kim J, Chauhan A. Extended delivery of hydrophilic drugs from silicone-hydrogel contact lenses containing vitamin E diffusion barriers. Biomaterials. 2010;31(14):4032–47.

    Article  CAS  PubMed  Google Scholar 

  88. Fraunfelder FT, Meyer SM. Systemic side effects from ophthalmic timolol and their prevention. J Ocul Pharmacol Ther. 1987;3(2):177–84.

    Article  CAS  Google Scholar 

  89. Peng CC, Ben-Shlomo A, Mackay EO, et al. Drug delivery by contact lens in spontaneously glaucomatous dogs. Curr Eye Res. 2012;37(3):204–11.

    Article  CAS  PubMed  Google Scholar 

  90. González-Chomón C, Concheiro A, Alvarez-Lorenzo C. Soft contact lenses for controlled ocular delivery: 50 years in the making. Ther Deliv. 2013;4(9):1141–61.

    Article  PubMed  CAS  Google Scholar 

  91. Alvarez-Lorenzo C, Hiratani H, Gómez-Amoza JL, et al. Soft contact lenses capable of sustained delivery of timolol. J Pharm Sci. 2002;91(10):2182–92.

    Article  CAS  PubMed  Google Scholar 

  92. Nikouei BM, Vahabzadeh SA, Mohajeri SA. Preparation of a molecularly imprinted soft contact lens as a new ocular drug delivery system for dorzolamide. Curr Drug Deliv. 2013;10(3):279–85.

    Article  Google Scholar 

  93. Jung HJ, Chauhan A. Temperature sensitive contact lenses for triggered ophthalmic drug delivery. Biomaterials. 2012;33(7):2289–300.

    Article  CAS  PubMed  Google Scholar 

  94. Lee SS, Hughes P, Ross AD, et al. Biodegradable implants for sustained drug release in the eye. Pharm Res. 2010;27(10):2043–53.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Dai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, Y., Jiang, K., Wei, G., Dai, Y. (2019). Medical Treatment Strategy for Glaucoma. In: Sun, X., Dai, Y. (eds) Medical Treatment of Glaucoma. Springer, Singapore. https://doi.org/10.1007/978-981-13-2733-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-2733-9_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-2732-2

  • Online ISBN: 978-981-13-2733-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics