Skip to main content

Convergence of Classical Fourier Series

  • Chapter
  • First Online:
  • 701 Accesses

Part of the book series: Monographs in Mathematical Economics ((MOME,volume 2))

Abstract

We have discussed basic contents of the theory of Fourier series on a general Hilbert space. We now proceed to the classical problem concerning the Fourier series expansion of an integrable function with respect to the trigonometric functions. If we choose \(\mathfrak {L}^2([-\pi , \pi ], \mathbb {C})\) as a Hilbert space and

$$\displaystyle \frac {1}{\sqrt {2\pi } }, \frac {1}{\sqrt {\pi }} \cos x , \; \frac {1}{\sqrt {\pi } } \sin x , \; \cdots ,\; \frac {1}{\sqrt {\pi } } \cos nx , \; \frac {1}{\sqrt {\pi } } \sin nx , \; \cdots ; \; n=1,2, \cdots $$

as a complete orthonormal system, the Fourier series of \(f\in \mathfrak {L}^2([-\pi , \pi ],\mathbb {C})\) is given in the form

$$\displaystyle \frac {a_0}{2} + \sum _{n=1}^\infty (a_n \cos nx + b_n \sin nx) , $$

where

$$\displaystyle a_n = \frac {1}{\pi } \int _{-\pi }^{\pi } f(x) \cos nx \; dx ,\quad b_n = \frac {1}{\pi } \int _{-\pi }^{\pi } f(x) \sin nx \; dx . $$

This Fourier series converges to f in \(\mathfrak {L}^2\)-norm.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    We owe this result to Kolmogorov– Fomin [14] pp. 387–388. For more general results, see Kawata [11] pp. 63–64.

  2. 2.

    The requirement (2.14) is called the Dini condition in Kolmogorov–Fomin [14], Vol.II, p. 388.

  3. 3.

    Weierstrass-type. Let \(g[a,b]\rightarrow \mathbb {R}\) be integrable and \(h: [a,b]\rightarrow \mathbb {R}\) be bounded and monotone. Then there exists some η ∈ [a, b] such that

    $$\displaystyle \begin{aligned} \int_{a}^{b} g(x)h(x)dx = h(a) \int_{a}^{\eta } g(x) dx + h(b) \int_{\eta }^{b} g(x) dx \end{aligned}$$

    (cf. Stromberg [16] pp. 328–329, Takagi [17] pp. 287–288).

    Bonnet-type. Let \(g: [a,b]\rightarrow \mathbb {R}\) be integrable and \(h: [a,b] \rightarrow \mathbb {R}\) be nonnegative and nonincreasing. Then there exists some η ∈ [a, b] such that

    $$\displaystyle \begin{aligned} \int_{a}^{b} g(x)h(x)dx = h(a) \int_{a}^{\eta } g(x) dx. \end{aligned}$$

    If h is nonnegative and nondecreasing, then there exists some η ∈ [a, b] such that

    $$\displaystyle \begin{aligned} \int_{a}^{b} g(x) h(x) dx = h(b) \int_{\eta }^{b} g(x) dx \end{aligned}$$

    (cf. Kawata [10] I, p. 18, Stromberg [16] p. 334).

  4. 4.

    We acknowledge Kawata [11] pp. 83–84 for the proof. It can be proved that satisfies (2.15). See fine calculations by Kawata [10] I, pp. 67–69.

  5. 5.

    The proof here is due to Kawata [11] p. 85.

  6. 6.

    Kolmogorov– Fomin [14] II, pp. 390–391.

  7. 7.

    Banach–Steinhaus resonance theorem: Let \(\mathfrak {X}\) be a Banach space, \(\mathfrak {Y}\) a normed space, and {T α|α ∈ A} a family of bounded linear operators of \(\mathfrak {X}\) into \(\mathfrak {Y}\). If {T α x|α ∈ A} is bounded in \(\mathfrak {Y}\) for each \(x\in \mathfrak {X}\), then {T α|α ∈ A} is uniformly bounded, i.e. supαAT α∥ < . (The converse is obvious.) cf. Dunford– Schwartz [2] pp. 52–53, Maruyama [15] pp. 344–345, Yosida [18] p. 69.

  8. 8.

    The classical works cited here are Hardy [3], Kolmogorov [12, 13], Katznelson [9] and Kahane–Katznelson [7]. See also Hardy–Rogozinski [4]. Zygmund [19] is the best treatise in the discipline.

  9. 9.

    The classical works are Carleson [1] and Hunt [5]. Jørsboe and Melbro [6] devoted their entire volume to a clear-cut proof of Carleson’s theorem.

  10. 10.

    Let u be absolutely continuous and v be integrable on [a, b]. Then u, v is also integrable. Denoting by V  the indefinite integral of v, we obtain the formula:

    $$\displaystyle \begin{aligned} \int_a^b u(t)v(t)dt=u(b)V(b)-u(a)V(a)-\int_a^b u'(t)V(t)dt. \end{aligned}$$

    cf. Kato [8] p. 107, Stromberg [16] p. 323.

  11. 11.

    cf. Stromberg [16] pp. 141–142, Takagi [17] p. 155, Theorem 39.

  12. 12.

    The proof given here is due to Kolmogorov– Fomin [14], pp. 391–392.

  13. 13.

    Takagi [17] p. 9, p. 275. Related results are neatly discussed in Stromberg [16] pp. 473–484.

References

  1. Carleson, L.: On the convergence and growth of partial sums of Fourier series. Acta Math. 116, 135–157 (1966)

    Article  MathSciNet  Google Scholar 

  2. Dunford, N., Schwartz, J.T.: Linear Operators, Part 1. Interscience, New York (1958)

    MATH  Google Scholar 

  3. Hardy, G.H.: On the summability of Fourier series. Proc. Lond. Math. Soc. 12, 365–372 (1913)

    Article  Google Scholar 

  4. Hardy, G.H., Rogozinski, W.W.: Fourier Series, 3rd edn. Cambridge University Press, London (1956)

    Google Scholar 

  5. Hunt, R.A.: On the convergence of Fourier series. In: Proceedings of the Conference on Orthogonal Expansions and Their Continuous Analogues, pp. 234–255. Southern Illinois University Press, Carbondale (1968)

    Google Scholar 

  6. Jørsboe, O.G., Melbro, L.: The Carleson-Hunt Theorem on Fourier Analysis. Springer, Berlin (1982)

    Google Scholar 

  7. Kahane, J.P., Katznelson, Y.: Sur les ensembles de divergence des séries trigonométriques. Stud. Math. 26, 305–306 (1966)

    Article  Google Scholar 

  8. Kato, T.: Iso Kaiseki (Functional Analysis). Kyoritsu Shuppan, Tokyo (1957) (Originally published in Japanese)

    Google Scholar 

  9. Katznelson, Y.: Sur les ensembles de divergence des séries trigonometriques. Stud. Math. 26, 301–304 (1966)

    Article  Google Scholar 

  10. Kawata, T.: Ohyo Sugaku Gairon (Elements of Applied Mathematics). I, II, Iwanami Shoten, Tokyo (1950, 1952) (Originally published in Japanese)

    Google Scholar 

  11. Kawata, T.: Fourier Kaiseki (Fourier Analysis). Sangyo Tosho, Tokyo (1975) (Originally published in Japanese)

    Google Scholar 

  12. Kolmogorov, A.N.: Une série de Fourier-Lebesgue divergent presque partout. Fundam. Math. 4, 324–328 (1923)

    Article  Google Scholar 

  13. Kolmogorov, A.N.: Une série de Fourier-Lebesgue divergent partout. C. R. Acad. Sci. Paris 183, 1327–1328 (1926)

    MATH  Google Scholar 

  14. Kolmogorov, A.N., Fomin, S.V.: (English edn.) Introductory Real Analysis. Prentice-Hall, New York (1970) (Japanese edn., translated from 4th edn.) Kansu-kaiseki no Kiso, 4th edn. Iwanami Shoten, Tokyo (1979), (Originally published in Russian). I use the Japanese edition for quotations

    Google Scholar 

  15. Maruyama, T.: Kansu Kaisekigaku (Functional Analysis). Keio Tsushin, Tokyo (1980) (Originally published in Japanese)

    Google Scholar 

  16. Stromberg, K.R.: An Introduction to Classical Real Analysis. American Mathematical Society, Providence (1981)

    MATH  Google Scholar 

  17. Takagi, T.: Kaiseki Gairon (Treatise on Analysis), 3rd edn. Iwanami Shoten, Tokyo (1961) (Originally published in Japanese)

    Google Scholar 

  18. Yosida, K.: Functional Analysis, 3rd edn. Springer, New York (1971)

    Book  Google Scholar 

  19. Zygmund, A.: Trigonometric Series, 2nd edn. Cambridge University Press, Cambridge (1959)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Maruyama, T. (2018). Convergence of Classical Fourier Series. In: Fourier Analysis of Economic Phenomena. Monographs in Mathematical Economics, vol 2. Springer, Singapore. https://doi.org/10.1007/978-981-13-2730-8_2

Download citation

Publish with us

Policies and ethics