Skip to main content

Morphology and Spectroscopy of Polymer–Carbon Composites

  • Chapter
  • First Online:
Carbon-Containing Polymer Composites

Abstract

Over several decades, polymer/carbon filler composites have been serving the human society through technological prospects to the greater dimension. While carbon-based fillers like low-cost carbon black have emerged as the most functional and effective additive in elastomers; similarly, carbon fillers in nanometric range (e.g., carbon nanotube, graphene, etc.) are capable of escalating electrical and thermal conductivity of insulating polymer matrices. However, in all such cases, the morphology of these carbon fillers in polymer matrix and existence of any chemical or physical interaction between these fillers and polymer matrix dictates the overall composite properties. This book chapter discusses the importance and role of morphology and spectroscopic analysis of carbon fillers on the properties of polymer composites. Also, a detailed understanding on different types of carbon fillers, its morphological aspects, and its nature of interaction with various polymer matrices are thoroughly covered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Medalia AI, Heckman FA (1969) Morphology of aggregates—II. Size and shape factors of carbon black aggregates from electron microscopy. Carbon 7:567–582

    Article  CAS  Google Scholar 

  2. Ma PC, Kim JK (2011) Carbon nanotubes for polymer reinforcement. Taylor & Francis

    Google Scholar 

  3. Boonstra BB, Medalia AI (1963) Effect of carbon black dispersion on the mechanical properties of rubber vulcanizates. Rubber Chem Technol 36:115–142

    Article  Google Scholar 

  4. Zhang C, Yi XS, Yui H, Asai S, Sumita M (1998) Selective location and double percolation of short carbon fiber filled polymer blends: high-density polyethylene/isotactic polypropylene. Mater Lett 36:186–190

    Article  CAS  Google Scholar 

  5. Sumita M, Sakata K, Hayakawa Y, Asai S, Miyasaka K, Tanemura M (1992) Double percolation effect on the electrical conductivity of conductive particles filled polymer blends. Colloid Polym Sci 270:134–139

    Article  CAS  Google Scholar 

  6. Sumita M, Takenaka K, Asai S (1995) Characterization of dispersion and percolation of filled polymers: molding time and temperature dependence of percolation time in carbon black filled low density polyethylene. Compos Interfaces 3:253–262

    Article  CAS  Google Scholar 

  7. Park SJ, Kim JS (2000) Role of chemically modified carbon black surfaces in enhancing interfacial adhesion between carbon black and rubber in a composite system. J Colloid Interface Sci 232:311–316

    Article  CAS  PubMed  Google Scholar 

  8. Ma PC, Liu MY, Zhang H, Wang SQ, Wang R, Wang K, Wong YK, Tang BZ, Hong SH, Paik KW, Kim JK (2009) Enhanced electrical conductivity of nanocomposites containing hybrid fillers of carbon nanotubes and carbon black. ACS Appl Mater Interfaces 1:1090–1096

    Article  CAS  PubMed  Google Scholar 

  9. Sumita M, Sakata K, Asai S, Miyasaka K, Nakagawa H (1991) Dispersion of fillers and the electrical conductivity of polymer blends filled with carbon black. Polym Bull 25:265–271

    Article  CAS  Google Scholar 

  10. Al-Mosawi Ali I, Al-Maamori Mohammad H, Al-Mayalee Khalidah H (2013) Spectroscopic studies of polyester-carbon black composites. Res J Mater Sci 2320:6055

    Google Scholar 

  11. Han D, Meng Z, Wu D, Zhang C, Zhu H (2011) Thermal properties of carbon black aqueous nanofluids for solar absorption. Nanoscale Res Lett 6:457

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Endo M, Kim YA, Hayashi T, Fukai Y, Oshida K, Terrones M, Yanagisawa T, Higaki S, Dresselhaus MS (2002) Structural characterization of cup-stacked-type nanofibers with an entirely hollow core. Appl Phys Lett 80:1267–1269

    Article  CAS  Google Scholar 

  13. Endo M, Kim YA, Ezaka M, Osada K, Yanagisawa T, Hayashi T, Terrones M, Dresselhaus MS (2003) Selective and efficient impregnation of metal nanoparticles on cup-stacked-type carbon nanofibers. Nano Lett 3:723–726

    Article  CAS  Google Scholar 

  14. Baek JB, Lyons CB, Tan LS (2004) Grafting of vapor-grown carbon nanofibers via in-situ polycondensation of 3-phenoxybenzoic acid in poly (phosphoric acid). Macromolecules 37:8278–8285

    Article  CAS  Google Scholar 

  15. Arlen MJ, Wang D, Jacobs JD, Justice R, Trionfi A, Hsu JW, Schaffer D, Tan LS, Vaia RA (2008) Thermal–electrical character of in situ synthesized polyimide-grafted carbon nanofiber composites. Macromolecules 41(21):8053–8062

    Article  CAS  Google Scholar 

  16. Chung DD, Chung D (2012) Carbon fiber composites. Butterworth-Heinemann

    Google Scholar 

  17. Chirila V, Marginean G, Iclanzan T, Merino C, Brandl W (2007) Method for modifying mechanical properties of carbon nano-fiber polymeric composites. J Thermoplast Compos Mater 20:277–289

    Article  CAS  Google Scholar 

  18. Brandl W, Marginean G, Chirila V, Warschewski W (2004) Production and characterisation of vapour grown carbon fiber/polypropylene composites. Carbon 42:5–9

    Article  CAS  Google Scholar 

  19. Finegan IC, Tibbetts GG, Glasgow DG, Ting JM, Lake ML (2003) Surface treatments for improving the mechanical properties of carbon nanofiber/thermoplastic composites. J Mater Sci 38:3485–3490

    Article  CAS  Google Scholar 

  20. Gordeyev SA, Ferreira JA, Bernardo CA, Ward IM (2001) A promising conductive material: highly oriented polypropylene filled with short vapour-grown carbon fibres. Mater Lett 51:32–36

    Article  CAS  Google Scholar 

  21. Lim CS, Rodriguez AJ, Guzman ME, Schaefer JD, Minaie B (2011) Processing and properties of polymer composites containing aligned functionalized carbon nanofibers. Carbon 49:1873–1883

    Article  CAS  Google Scholar 

  22. Nie Y, Hübert T (2012) Surface modification of carbon nanofibers by glycidoxysilane for altering the conductive and mechanical properties of epoxy composites. Compos A 43:1357–1364

    Article  CAS  Google Scholar 

  23. Werner P, Altstädt V, Jaskulka R, Jacobs O, Sandler JK, Shaffer MS, Windle AH (2004) Tribological behaviour of carbon-nanofibre-reinforced poly (ether ether ketone). Wear 257:1006–1014

    Article  CAS  Google Scholar 

  24. Sandler J, Werner P, Shaffer MS, Demchuk V, Altstädt V, Windle AH (2002) Carbon-nanofibre-reinforced poly (ether ether ketone) composites. Compos A 33:1033–1039

    Article  Google Scholar 

  25. Higgins BA, Brittain WJ (2005) Polycarbonate carbon nanofiber composites. Eur Polym J 41:889–893

    Article  CAS  Google Scholar 

  26. Manea F, Motoc S, Pop A, Remes A, Schoonman J (2012) Silver-functionalized carbon nanofiber composite electrodes for ibuprofen detection. Nanoscale Res Lett 7:1–4

    Article  Google Scholar 

  27. Min C, Shen X, Shi Z, Chen L, Xu Z (2010) The electrical properties and conducting mechanisms of carbon nanotube/polymer nanocomposites: a review. Polym Plast Technol Eng 49:1172–1181

    Article  CAS  Google Scholar 

  28. Maity A, Ray SS, Pillai SK (2007) Morphology and electrical conductivity of poly(N-vinylcarbazole)/carbon nanotubes nanocomposite synthesized by solid state polymerization. Macromol Rapid Commun 28:2224–2229

    Article  CAS  Google Scholar 

  29. Sun YP, Fu K, Lin Y, Huang W (2002) Functionalized carbon nanotubes: properties and applications. Acc Chem Res 35:1096–1104

    Article  CAS  PubMed  Google Scholar 

  30. Tasis D, Tagmatarchis N, Bianco A, Prato M (2006) Chemistry of carbon nanotubes. Chem Rev 106:1105–1136

    Article  CAS  PubMed  Google Scholar 

  31. Kathi J, Rhee KY (2008) Surface modification of multi-walled carbon nanotubes using 3-aminopropyltriethoxysilane. J Mater Sci 43:33–37

    Article  CAS  Google Scholar 

  32. Kim JA, Seong DG, Kang TJ, Youn JR (2006) Effects of surface modification on rheological and mechanical properties of CNT/epoxy composites. Carbon 44:1898–1905

    Article  CAS  Google Scholar 

  33. Ma PC, Kim JK, Tang BZ (2006) Functionalization of carbon nanotubes using a silane coupling agent. Carbon 44:3232–3238

    Article  CAS  Google Scholar 

  34. Yuan JM, Fan ZF, Chen XH, Chen XH, Wu ZJ, He LP (2009) Preparation of polystyrene–multiwalled carbon nanotube composites with individual-dispersed nanotubes and strong interfacial adhesion. Polymer 50:3285–3291

    Article  CAS  Google Scholar 

  35. Zainal NFA, Azira AA, Nik SF, Rusop M (2009) The electrical and optical properties of PMMA/MWCNTs nanocomposite thin films. In: Rusop M, Soga T (eds) AIP conference proceedings, vol 1136, pp 750–754

    Google Scholar 

  36. Kymakis E, Alexandou I, Amaratunga GAJ (2002) Single-walled carbon nanotube–polymer composites: electrical, optical and structural investigation. Synth Met 127:59–62

    Article  CAS  Google Scholar 

  37. Liao SH, Hung CH, Ma CCM, Yen CY, Lin YF, Weng CC (2008) Preparation and properties of carbon nanotube-reinforced vinyl ester/nanocomposite bipolar plates for polymer electrolyte membrane fuel cells. J Power Sources 176:175–182

    Article  CAS  Google Scholar 

  38. Liao SH, Yen CY, Weng CC, Lin YF, Ma CCM, Yang CH, Tsai MC, Yen MY, Hsiao MC, Lee SJ, Xie XF (2008) Preparation and properties of carbon nanotube/polypropylene nanocomposite bipolar plates for polymer electrolyte membrane fuel cells. J Power Sources 185:1225–1232

    Article  CAS  Google Scholar 

  39. Bai JB, Allaoui A (2003) Effect of the length and the aggregate size of MWNTs on the improvement efficiency of the mechanical and electrical properties of nanocomposites—experimental investigation. Compos A 34:689–694

    Article  CAS  Google Scholar 

  40. Liang GD, Tjong SC (2006) Electrical properties of low-density polyethylene/multiwalled carbon nanotube nanocomposites. Mater Chem Phys 100:132–137

    Article  CAS  Google Scholar 

  41. Jung YJ, Kar S, Talapatra S, Soldano C, Viswanathan G, Li X, Yao Z, Ou FS, Avadhanula A, Vajtai R, Curran S (2006) Aligned carbon nanotube–polymer hybrid architectures for diverse flexible electronic applications. Nano Lett 6:413–418

    Article  CAS  PubMed  Google Scholar 

  42. Gojny FH, Nastalczyk J, Roslaniec Z, Schulte K (2003) Surface modified multi-walled carbon nanotubes in CNT/epoxy-composites. Chem Phys Lett 370:820–824

    Article  CAS  Google Scholar 

  43. Ago H, Kugler T, Cacialli F, Salaneck WR, Shaffer MS, Windle AH, Friend RH (1999) Work functions and surface functional groups of multiwall carbon nanotubes. J Phys Chem B 103:8116–8121

    Article  CAS  Google Scholar 

  44. Liu T, Phang IY, Shen L, Chow SY, Zhang WD (2004) Morphology and mechanical properties of multiwalled carbon nanotubes reinforced nylon-6 composites. Macromolecules 37:7214–7222

    Article  CAS  Google Scholar 

  45. Kanagaraj S, Varanda FR, Zhil’tsova TV, Oliveira MS, Simões JA (2007) Mechanical properties of high density polyethylene/carbon nanotube composites. Compos Sci Technol 67:3071–3077

    Article  CAS  Google Scholar 

  46. Huang H, Liu CH, Wu Y, Fan SH (2005) Aligned carbon nanotube composite films for thermal management. Adv Mater 17:1652–1656

    Article  CAS  Google Scholar 

  47. Kashiwagi T, Grulke E, Hilding J, Harris R, Awad W, Douglas J (2002) Thermal degradation and flammability properties of poly (propylene)/carbon nanotube composites. Macromol Rapid Commun 23:761–765

    Article  CAS  Google Scholar 

  48. Beyer G (2002) Improvements of the fire performance of nanocomposites. In: Thirteenth annual BCC conference on flame retardancy. Stamford, CT

    Google Scholar 

  49. Xiong J, Zheng Z, Qin X, Li M, Li H, Wang X (2006) The thermal and mechanical properties of a polyurethane/multi-walled carbon nanotube composite. Carbon 44:2701–2707

    Article  CAS  Google Scholar 

  50. Kashiwagi T, Grulke E, Hilding J, Groth K, Harris R, Butler K, Shields J, Kharchenko S, Douglas J (2004) Thermal and flammability properties of polypropylene/carbon nanotube nanocomposites. Polymer 45:4227–4239

    Article  CAS  Google Scholar 

  51. Krato H, Heath J, O’Brien SC, Curl RF, Smalley RE (1985) Nature 318:162–163

    Article  Google Scholar 

  52. Sanz A, Wong HC, Nedoma AJ, Douglas JF, Cabral JT (2015) Influence of C60 fullerenes on the glass formation of polystyrene. Polymer 68:47–56

    Article  CAS  Google Scholar 

  53. Sariciftci NS, Smilowitz L, Heeger AJ, Wudl F (1992) Photoinduced electron transfer from a conducting polymer to buckminsterfullerene. Science 258:1474–1476

    Article  CAS  PubMed  Google Scholar 

  54. Vinogradova LV, Melenevskaya EY, Khachaturov AS, Kever EE, Litvinova LS, Novokreshchenova AV, Sushko MA, Klenin SI, Zgonnik VN (1998) Water-soluble complexes of C60 fulleren with poly(N-vinylpyrrolidone). Polym Sci Ser B Polym Chem 40:1152–1159

    Google Scholar 

  55. Jurkowska B, Jurkowski B, Kamrowski P, Pesetskii SS, Koval VN, Pinchuk LS, Olkhov YA (2006) Properties of fullerene-containing natural rubber. J Appl Polym Sci 100:390–398

    Article  CAS  Google Scholar 

  56. Ginzburg BM, Tabarov SK, Tuichiev S, Shepelevskii AA (2007) Effect of C60 fullerene additives on the structure and mechanical properties of thin organic glass films. Tech Phys Lett 33:1007–1010

    Article  CAS  Google Scholar 

  57. Tuichiev S, Tabarov SK, Rashidov D, Shoimov U, Ginzburg BM (2008) Effect of C60 fullerene additives on the mechanical properties of low-density polyethylene films. Tech Phys Lett 34:56–57

    Article  CAS  Google Scholar 

  58. Chirvase D, Parisi J, Hummelen JC, Dyakonov V (2004) Influence of nanomorphology on the photovoltaic action of polymer–fullerene composites. Nanotechnology 15:1317

    Article  CAS  Google Scholar 

  59. Zeng HP, Wang T, Sandanayaka AS, Araki Y, Ito O (2005) Photoinduced charge separation and charge recombination in [60]fullerene–ethylcarbazole and [60]fullerene–triphenylamines in polar solvents. J Phys Chem A 109:4713–4720

    Article  CAS  PubMed  Google Scholar 

  60. Hoppe H, Niggemann M, Winder C, Kraut J, Hiesgen R, Hinsch A, Meissner D, Sariciftci NS (2004) Nanoscale morphology of conjugated polymer/fullerene-based bulk-heterojunction solar cells. Adv Funct Mater 14:1005–1011

    Article  CAS  Google Scholar 

  61. Shaheen SE, Brabec CJ, Sariciftci NS, Padinger F, Fromherz T, Hummelen JC (2001) 2.5% efficient organic plastic solar cells. Appl Phys Lett 78:841–843

    Article  CAS  Google Scholar 

  62. Thompson BC, Fréchet JM (2008) Polymer–fullerene composite solar cells. Angew Chem Int Ed 47:58–77

    Article  CAS  Google Scholar 

  63. Şen F, Kahraman MV (2014) Thermal conductivity and properties of cyanate Ester/nanodiamond composites. Polym Adv Technol 25:1020–1026

    Article  CAS  Google Scholar 

  64. Kidalov SV, Shakhov FM, Vul AY (2008) Thermal conductivity of sintered nanodiamonds and microdiamonds. Diam Relat Mater 17:844–847

    Article  CAS  Google Scholar 

  65. Mochalin VN, Gogotsi Y (2015) Nanodiamond–polymer composites. Diam Relat Mater 58:161–171

    Article  CAS  Google Scholar 

  66. Zhang Y, Hu X, Zhao JH, Sheng K, Cannon WR, Wang X, Fursin L (2009) Rheology and thermal conductivity of diamond powder-filled liquid epoxy encapsulants for electronic packaging. IEEE Trans Compon Packag Technol 32:716–723

    Article  CAS  Google Scholar 

  67. Jee AY, Lee M (2011) Thermal and mechanical properties of alkyl-functionalized nanodiamond composites. Curr Appl Phys 11:1183–1187

    Article  Google Scholar 

  68. Zubrowska A, Masirek R, Piorkowska E, Pietrzak L (2015) Structure, thermal and mechanical properties of polypropylene composites with nano-and micro-diamonds. Polimery 60:331–336

    Article  CAS  Google Scholar 

  69. Dubrovinskaia N, Dub S, Dubrovinsky L (2006) Superior wear resistance of aggregated diamond nanorods. Nano Lett 6:824–826

    Article  CAS  PubMed  Google Scholar 

  70. Li L, Davidson JL, Lukehart CM (2006) Surface functionalization of nanodiamond particles via atom transfer radical polymerization. Carbon 44:2308–2315

    Article  CAS  Google Scholar 

  71. Liu Y, Gu Z, Margrave JL, Khabashesku VN (2004) Functionalization of nanoscale diamond powder: fluoro-, alkyl-, amino-, and amino acid-nanodiamond derivatives. Chem Mater 16:3924–3930

    Article  CAS  Google Scholar 

  72. Schreiner PR, Fokina NA, Tkachenko BA, Hausmann H, Serafin M, Dahl JE, Liu S, Carlson RM, Fokin AA (2006) Functionalized nanodiamonds: triamantane and tetramantane. J Org Chem 71:6709–6720

    Article  CAS  PubMed  Google Scholar 

  73. Liu Y, Khabashesku VN, Halas NJ (2005) Fluorinated nanodiamond as a wet chemistry precursor for diamond coatings covalently bonded to glass surface. J Am Chem Soc 127:3712–3713

    Article  CAS  PubMed  Google Scholar 

  74. Yang JH, Song KS, Zhang GJ, Degawa M, Sasaki Y, Ohdomari I, Kawarada H (2006) Characterization of DNA hybridization on partially aminated diamond by aromatic compounds. Langmuir 22:11245–11250

    Article  CAS  PubMed  Google Scholar 

  75. Dolmatov VY (2001) Detonation synthesis ultradispersed diamonds: properties and applications. Russ Chem Rev 70:607–626

    Article  CAS  Google Scholar 

  76. Zhang Q, Naito K, Tanaka Y, Kagawa Y (2007) Polyimide/diamond nanocomposites: microstructure and indentation behavior. Macromol Rapid Commun 28:2069–2073

    Article  CAS  Google Scholar 

  77. Shenderova O, Tyler T, Cunningham G, Ray M, Walsh J, Casulli M, Hens S, McGuire G, Kuznetsov V, Lipa S (2007) Nanodiamond and onion-like carbon polymer nanocomposites. Diam Relat Mater 16:1213–1217

    Article  CAS  Google Scholar 

  78. Zhang Q, Naito K, Tanaka Y, Kagawa Y (2008) Grafting polyimides from nanodiamonds. Macromolecules 41:536–538

    Article  CAS  Google Scholar 

  79. Kalsoom U, Peristyy A, Nesterenko PN, Paull B (2016) A 3D printable diamond polymer composite: a novel material for fabrication of low cost thermally conducting devices. RSC Adv 6:38140–38147

    Article  CAS  Google Scholar 

  80. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191

    Article  CAS  PubMed  Google Scholar 

  81. Blake P, Brimicombe PD, Nair RR, Booth TJ, Jiang D, Schedin F, Ponomarenko LA, Morozov SV, Gleeson HF, Hill EW, Geim AK (2008) Graphene-based liquid crystal device. Nano Lett 8:1704–1708

    Article  PubMed  Google Scholar 

  82. Miranda R, Vázquez de Parga AL (2009) Graphene: surfing ripples towards new devices. Nat Nanotechnol 4:549–550

    Article  CAS  PubMed  Google Scholar 

  83. Ramanathan T, Abdala AA, Stankovich S, Dikin DA, Herrera-Alonso M, Piner RD, Adamson DH, Schniepp HC, Chen XRRS, Ruoff RS, Nguyen ST (2008) Functionalized graphene sheets for polymer nanocomposites. Nat Nanotechnol 3:327–331

    Article  CAS  PubMed  Google Scholar 

  84. Lee YR, Raghu AV, Jeong HM, Kim BK (2009) Properties of waterborne polyurethane/functionalized graphene sheet nanocomposites prepared by an in situ method. Macromol Chem Phys 210:1247–1254

    Article  CAS  Google Scholar 

  85. Yamaguchi H, Eda G, Mattevi C, Kim H, Chhowalla M (2010) Highly uniform 300 mm wafer-scale deposition of single and multilayered chemically derived graphene thin films. ACS Nano 4:524–528

    Article  CAS  PubMed  Google Scholar 

  86. Quan H, Zhang BQ, Zhao Q, Yuen RK, Li RK (2009) Facile preparation and thermal degradation studies of graphite nanoplatelets (GNPs) filled thermoplastic polyurethane (TPU) nanocomposites. Compos A 40:1506–1513

    Article  CAS  Google Scholar 

  87. Yuen SM, Ma CCM, Chiang CL, Chang JA, Huang SW, Chen SC, Chuang CY, Yang CC, Wei MH (2007) Silane-modified MWCNT/PMMA composites–preparation, electrical resistivity, thermal conductivity and thermal stability. Compos A 38:2527–2535

    Article  CAS  Google Scholar 

  88. Becerril HA, Mao J, Liu Z, Stoltenberg RM, Bao Z, Chen Y (2008) Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano 2:463–470

    Article  CAS  PubMed  Google Scholar 

  89. Liang J, Huang Y, Zhang L, Wang Y, Ma Y, Guo T, Chen Y (2009) Molecular-level dispersion of graphene into poly (vinyl alcohol) and effective reinforcement of their nanocomposites. Adv Funct Mater 19:2297–2302

    Article  CAS  Google Scholar 

  90. Chen G, Weng W, Wu D, Wu C (2003) PMMA/graphite nanosheets composite and its conducting properties. Eur Polym J 39:2329–2335

    Article  CAS  Google Scholar 

  91. Jović N, Dudić D, Montone A, Antisari MV, Mitrić M, Djoković V (2008) Temperature dependence of the electrical conductivity of epoxy/expanded graphite nanosheet composites. Scr Mater 58:846–849

    Article  CAS  Google Scholar 

  92. Mu Q, Feng S (2007) Thermal conductivity of graphite/silicone rubber prepared by solution intercalation. Thermochim Acta 462:70–75

    Article  CAS  Google Scholar 

  93. Hirata M, Gotou T, Horiuchi S, Fujiwara M, Ohba M (2004) Thin-film particles of graphite oxide 1: high-yield synthesis and flexibility of the particles. Carbon 42:2929–2937

    CAS  Google Scholar 

  94. Yang X, Li L, Shang S, Tao XM (2010) Synthesis and characterization of layer-aligned poly (vinyl alcohol)/graphene nanocomposites. Polymer 51:3431–3435

    Article  CAS  Google Scholar 

  95. Kim H, Miura Y, Macosko CW (2010) Graphene/polyurethane nanocomposites for improved gas barrier and electrical conductivity. Chem Mater 22(11):3441–3450

    Article  CAS  Google Scholar 

  96. Raghu AV, Lee YR, Jeong HM, Shin CM (2008) Preparation and physical properties of waterborne polyurethane/functionalized graphene sheet nanocomposites. Macromol Chem Phys 209:2487–2493

    Article  CAS  Google Scholar 

  97. Hontoria-Lucas C, Lopez-Peinado AJ, López-González JDD, Rojas-Cervantes ML, Martin-Aranda RM (1995) Study of oxygen-containing groups in a series of graphite oxides: physical and chemical characterization. Carbon 33:1585–1592

    Article  CAS  Google Scholar 

  98. Nguyen DA, Lee YR, Raghu AV, Jeong HM, Shin CM, Kim BK (2009) Morphological and physical properties of a thermoplastic polyurethane reinforced with functionalized graphene sheet. Polym Int 58:412–417

    Article  CAS  Google Scholar 

  99. Shin HJ, Kim KK, Benayad A, Yoon SM, Park HK, Jung IS, Jin MH, Jeong HK, Kim JM, Choi JY, Lee YH (2009) Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Adv Funct Mater 19:1987–1992

    Article  CAS  Google Scholar 

  100. Hu H, Wang X, Wang J, Wan L, Liu F, Zheng H, Chen R, Xu C (2010) Preparation and properties of graphene nanosheets–polystyrene nanocomposites via in situ emulsion polymerization. Chem Phys Lett 484:247–253

    Article  CAS  Google Scholar 

  101. Kim H, Miura Y, Macosko CW (2010) Graphene/polyurethane nanocomposites for improved gas barrier and electrical conductivity. Chem Mater 22:3441–3450

    Article  CAS  Google Scholar 

  102. Kim H, Macosko CW (2008) Morphology and properties of polyester/exfoliated graphite nanocomposites. Macromolecules 41:3317–3327

    Article  CAS  Google Scholar 

  103. Kim H, Abdala AA, Macosko CW (2010) Graphene/polymer nanocomposites. Macromolecules 43:6515–6530

    Article  CAS  Google Scholar 

  104. Zhao H, Min K, Aluru NR (2009) Size and chirality dependent elastic properties of graphene nanoribbons under uniaxial tension. Nano Lett 9:3012–3015

    Article  CAS  PubMed  Google Scholar 

  105. Scarpa F, Adhikari S, Phani AS (2009) Effective elastic mechanical properties of single layer graphene sheets. Nanotechnol 20:065709

    Article  CAS  Google Scholar 

  106. Chrissafis K, Paraskevopoulos KM, Pavlidou E, Bikiaris D (2009) Thermal degradation mechanism of HDPE nanocomposites containing fumed silica nanoparticles. Thermochim Acta 485:65–71

    Article  CAS  Google Scholar 

  107. Woo MW, Wong P, Tang Y, Triacca V, Gloor PE, Hrymak AN, Hamielec AE (1995) Melting behavior and thermal properties of high density polythylene. Polym Eng Sci 35:151–156

    Article  CAS  Google Scholar 

  108. Ventura G, Martelli V (2009) Thermal conductivity of Kevlar 49 between 7 and 290K. Cryogenics 49:735–737

    Article  CAS  Google Scholar 

  109. Sun Y, Luo Y, Jia D (2008) Preparation and properties of natural rubber nanocomposites with solid-state organomodified montmorillonite. J Appl Polym Sci 107:2786–2792

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Purabi Bhagabati .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhagabati, P., Rahaman, M., Khastgir, D. (2019). Morphology and Spectroscopy of Polymer–Carbon Composites. In: Rahaman, M., Khastgir, D., Aldalbahi, A. (eds) Carbon-Containing Polymer Composites. Springer Series on Polymer and Composite Materials. Springer, Singapore. https://doi.org/10.1007/978-981-13-2688-2_9

Download citation

Publish with us

Policies and ethics