Skip to main content

Dielectric Properties of Polymer–Carbon Composites

  • Chapter
  • First Online:
Carbon-Containing Polymer Composites

Part of the book series: Springer Series on Polymer and Composite Materials ((SSPCM))

Abstract

Polymer composites are widely used in recent days for various applications. Carbon-based polymer composites have great attention mainly towards electrical applications. This chapter is focused on different carbon fillers and their polymer-based composites/nanocomposites. The effect of various carbon fillers on different polymer composites has been thoroughly described. The dielectric properties of carbon–polymer composites can be affected by many factors. These factors are as follows: processing condition, composite morphology, frequency, concentration, temperature, electric field, and pressure. The effects of all the above factors on dielectric properties of carbon–polymer composites have been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mittal G, Dhand V, Rhee KY, Park S-J, Lee WR (2015) A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites. J Ind Eng Chem 21:11–25

    Article  CAS  Google Scholar 

  2. Youssef AM (2013) Polymer nanocomposites as a new trend for packaging applications. Polym-Plast Technol Eng 52:635–660

    Article  CAS  Google Scholar 

  3. Manias E (2007) Nanocomposites stiffer by design. Nat Mater 6:9–11

    Article  CAS  Google Scholar 

  4. Nayak S, Chaki TK, Khastgir D (2014) Development of flexible piezoelectric poly(dimethylsiloxane)–BaTiO3 nanocomposites for electrical energy harvesting. Ind Eng Chem Res 53(39):14982–14992

    Article  CAS  Google Scholar 

  5. Koulouridis S, Kiziltas G, Zhou Y, Hansford DJ, Volakis JL (2006) Polymer–ceramic composites for microwave applications: fabrication and performance assessment. IEEE Trans Microw Theory Tech 54(12):4202–4208

    Article  CAS  Google Scholar 

  6. Rogers JA, Bao Z, Baldwin K, Dodabalapur A, Crone B, Raju VR, Kuck V, Katz H, Amundson K, Ewing J, Drzaic P (2001) Paper-like electronic displays: large-area rubber-stamped plastic sheets of electronics and microencapsulated electrophoretic inks. Proc Natl Acad Sci USA 98(9):4835–4840

    Article  CAS  Google Scholar 

  7. Hwang DH, Chuah BS, Li XC, Kimt ST, Moratti SC, Holmes AB (1998) New luminescent polymers for LEDs and LECs. Macromol Symp 125(1):111–120

    Article  CAS  Google Scholar 

  8. Li R, DeJean G, Tentzeris MM, Papapolymerou J, Laskar J (2005) Radiation-pattern improvement of patch antennas on a large-size substrate using a compact soft-surface structure and its realization on LTCC multilayer technology. IEEE Trans Antennas Propag 53(1):200–208

    Article  Google Scholar 

  9. Nayak S, Chaki TK, Khastgir D (2016) Dielectric relaxation and viscoelastic behavior of polyurethane–titania composites: dielectric mixing models to explain experimental results. Polym Bull 74(2):369–392

    Article  Google Scholar 

  10. Nayak S, Kumar Chaki T, Khastgir D (2012) Development of poly(dimethylsiloxane)/BaTiO3 nanocomposites as dielectric material. Adv Mater Res 622–623:897–900

    Article  Google Scholar 

  11. Gam S, Meth JS, Zane SG, Chi C, Wood BA, Winey KI, Clarke N, Composto RJ (2012) Polymer diffusion in a polymer nanocomposite: effect of nanoparticle size and polydispersity. Soft Matter 8(24):6512

    Article  CAS  Google Scholar 

  12. Liang GD, Tjong SC (2006) Electrical properties of low-density polyethylene/multiwalled carbon nanotube nanocomposites. Mater Chem Phys 100(1):132–137

    Article  CAS  Google Scholar 

  13. Patel HA, Somani RS, Bajaj HC, Jasra RV (2006) Nanoclays for polymer nanocomposites, paints, inks, greases and cosmetics formulations, drug delivery vehicle and waste water treatment. Bull Mater Sci 29(2):133–145

    Article  CAS  Google Scholar 

  14. Segal E, Tchoudakov R, Narkis M, Siegma A (2002) Thermoplastic polyurethane-carbon black compounds: structure, electrical conductivity and sensing of liquids. Polym Eng Sci 42(12):2430–2439

    Article  CAS  Google Scholar 

  15. Nayak S, Sahoo B, Kumar Chaki T, Khastgir D (2013) Development of polyurethane–titania nanocomposites as dielectric and piezoelectric material. RSC Adv 3(8):2620

    Article  CAS  Google Scholar 

  16. Nayak S, Rahaman M, Pandey AK, Setua DK, Chaki TK, Khastgir D (2013) Development of poly(dimethylsiloxane)-titania nanocomposites with controlled dielectric properties: effect of heat treatment of titania on electrical properties. J Appl Polym Sci 127(1):784–796

    Article  CAS  Google Scholar 

  17. Manna R, Nayak S, Rahaman M, Khastgir D (2014) Effect of annealed titania on dielectric and mechanical properties of ethylene propylene diene monomer-titania nanocomposites. e-Polymers 14(4):267–275

    Article  CAS  Google Scholar 

  18. Kasgoz A, Akın D, Ayten AI, Durmus A (2014) Effect of different types of carbon fillers on mechanical and rheological properties of cyclic olefin copolymer (COC) composites. Compos B Eng 66:126–135

    Article  CAS  Google Scholar 

  19. Zhou Z, Wang S, Zhang Y, Zhang Y (2006) Effect of different carbon fillers on the properties of PP composites: comparison of carbon black with multiwalled carbon nanotubes. J Appl Polym Sci 102(5):4823–4830

    Article  CAS  Google Scholar 

  20. Yousefi N, Sun X, Lin X, Shen X, Jia J, Zhang B, Tang B, Chan M, Kim J-K (2014) Highly aligned graphene/polymer nanocomposites with excellent dielectric properties for high-performance electromagnetic interference shielding. Adv Mater 26:5480–5487

    Article  CAS  Google Scholar 

  21. Ameli A, Nofar M, Park CB, Tschke PP, Rizvi G (2014) Polypropylene/carbon nanotube nano/microcellular structures with high dielectric permittivity, low dielectric loss, and low percolation threshold. Carbon 71:206–217

    Article  CAS  Google Scholar 

  22. Dalmas F, Cavaille J-Y, Gauthier C, Chazeau L, Dendievel R (2007) Viscoelastic behavior and electrical properties of flexible nanofiber filled polymer nanocomposites. Influence of processing conditions. Compos Sci Technol 67:829–839

    Article  CAS  Google Scholar 

  23. Bai JB, Allaoui A (2003) Effect of the length and the aggregate size of MWNTs on the improvement efficiency of the mechanical and electrical properties of nanocomposites-experimental investigation. Compos A Appl Sci Manuf 34:689–694

    Article  Google Scholar 

  24. Wang Q, Dai J, Li W, Wei Z, Jiang J (2008) The effects of CNT alignment on electrical conductivity and mechanical properties of SWNT/epoxy nanocomposites. Compos Sci Technol 68:1644–1648

    Article  CAS  Google Scholar 

  25. Dang Z-M, Wang L, Yin Y, Zhang Q, Lei Q-Q (2007) Giant dielectric permittivities in functionalized carbon-nanotube/electroactive-polymer nanocomposites. Adv Mater 19:852–857

    Article  CAS  Google Scholar 

  26. Seo M-K, Park S-J (2004) Electrical resistivity and rheological behaviors of carbon nanotubes-filled polypropylene composites. Chem Phys Lett 395:44–48

    Article  CAS  Google Scholar 

  27. Song YS, Youn JR (2005) Influence of dispersion states of carbon nanotubes on physical properties of epoxy nanocomposites. Carbon 43:1378–1385

    Article  CAS  Google Scholar 

  28. Potschke P, Abdel-Goad M, Alig I, Dudkin S, Lellinger D (2004) Rheological and dielectrical characterization of melt mixed polycarbonate-multiwalled carbon nanotube composites. Polym Bull 45:8863–8870

    Article  Google Scholar 

  29. Li Q, Xue QZ, Gao XL, Zheng QB (2009) Temperature dependence of the electrical properties of the carbon nanotube/polymer composites. eXPRESS Polym Lett 3(12):769–777

    Article  CAS  Google Scholar 

  30. Mohanraj GT, Dey PK, Chaki TK, Chakraborty A, Khastgir D (2007) Effect of temperature, pressure, and composition on dc resistivity and ac conductivity of conductive styrene-butadiene rubber–particulate metal alloy nanocomposites. Polym Compos 28(5):696–704

    Article  CAS  Google Scholar 

  31. Mohiuddin M, Hoa SV (2011) Electrical resistance of CNT-PEEK composites under compression at different temperatures. Nanoscale Res Lett 6:419–423

    Article  Google Scholar 

  32. Nayak S (2015) Electroactive ceramic filled flexible poly(dimethylsiloxane) and polyurethane composites for dielectric and piezoelectric applications. PhD Thesis, Indian Institute of Technology Kharagpur

    Google Scholar 

  33. Rahaman M, Chaki TK, Khastgir D (2014) Polyaniline/ethylene vinyl acetate composites as dielectric sensor. Polym Eng Sci 54(7):1632–1639

    Article  CAS  Google Scholar 

  34. Aminabhavi MT, Cassidy PE, Thompson CM (1990) Electrical resistivity of carbon-black-loaded rubbers. Rubber Chem Technol 63(3):451–471

    Article  CAS  Google Scholar 

  35. Hu CH, Liu CH, Chen LZ, Peng YC, Fan SS (2008) Resistance-pressure sensitivity and a mechanism study of multiwall carbon nanotube networks/poly(dimethylsiloxane) composites. Appl Phys Lett 93:03310-1-033108-3

    Article  Google Scholar 

  36. Hwang J, Jang J, Hong K, Kim KN, Han JH, Shin K, Park CE (2011) Poly(3-hexylthiophene) wrapped carbon nanotube/poly(dimethylsiloxane) composites for use in finger-sensing piezoresistive pressure sensors. Carbon 49:106–110

    Article  CAS  Google Scholar 

  37. Sa-Gong G, Safari A, Jang SJ, Newnham RE (1986) Poling flexible piezoelectric composites. Ferroelectr Lett Sect 5(5):131–142

    Article  CAS  Google Scholar 

  38. Park K-I, Jeong CK, Ryu J, Hwang G-T, Lee KJ (2013) Flexible and large-area nanocomposite generators based on lead zirconate titanate particles and carbon nanotubes. Adv Energy Mater 3:1539–1544

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suryakanta Nayak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nayak, S. (2019). Dielectric Properties of Polymer–Carbon Composites. In: Rahaman, M., Khastgir, D., Aldalbahi, A. (eds) Carbon-Containing Polymer Composites. Springer Series on Polymer and Composite Materials. Springer, Singapore. https://doi.org/10.1007/978-981-13-2688-2_6

Download citation

Publish with us

Policies and ethics