Skip to main content

An Explicit Cell-Based Nesting Robust Architecture and Analysis of Full Adder

  • Conference paper
  • First Online:
Recent Trends in Communication, Computing, and Electronics

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 524))

Abstract

Moving towards micrometre scale to nanometre scale device shrinks down emerging nanometre technology such as quantum-dot cellular automata as a nesting success. The introduced architecture is robust where the explicit design of full adder and full subtraction uses for Ex-OR design. A new architecture of Ex-OR based on one majority gate is proposed, which its most optimized architecture and its placement of cells from the novel design. The analysis based on simulation showed that the introduced Ex-OR and full adder makes only 11 and 46 cells count, respectively. In proposed Ex-OR design, first output is received with no any latency which can be a suitable design for implementation of the high-speed full adder design. In addition, power estimation results are obtained after simulation of proposed designs in QCAPro tool. Therefore, the novel designs improve the energy dissipation parameters such as mean leakage energy dissipation, mean switching energy dissipation and total energy dissipation 75, 11.28 and 82.19% in comparison with the most robust design in existing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lent, C. S., Tougaw, P. D., Porod, W., & Bernstein, G. H. (1993). Quantum cellular automata. Nanotechnology., 4, 49–57.

    Article  Google Scholar 

  2. Orlov, A. O., Amlani, I., Bernstein, G. H., Lent, C. S., & Snider, G. L. (1997). Realization of a functional cell for quantum-dot cellular automata. Science, 277, 928–930.

    Article  Google Scholar 

  3. Tougaw, P. D., & Lent, C. S. (1994). Logical devices implemented using quantum cellular automata. Journal of Applied Physics, 75(3), 1818–1825.

    Article  Google Scholar 

  4. Lent, C. S., & Tougaw, P. D. (1997). A device architecture for computing with quantum dots. Proceedings of the IEEE, 85(4), 541–557.

    Article  Google Scholar 

  5. Bhoi, B. K., Misra, N. K., & Pradhan M. (2018). Novel robust design for reversible code converters and binary incrementer with quantum-dot cellular automata. In S. Bhalla, V. Bhateja, A. Chandavale, A. Hiwale, & S. Satapathy (Eds.), Intelligent computing and information and communication. Advances in intelligent systems and computing (Vol 673). Singapore: Springer.

    Chapter  Google Scholar 

  6. Walus, K., Dysart, T. J., Jullien, G., & Budiman, A. R. (2004). QCADesigner: A rapid design and simulation tool for quantum-dot cellular automata. IEEE Transactions on Nanotechnology, 3(1), 26–31.

    Article  Google Scholar 

  7. Ramesh, B. & Rani, M. A. (2016). Implementation of parallel adders using area efficient quantum dot cellular automata full adder. In 2016 10th International Conference on Intelligent Systems and Control (ISCO), (pp. 1–5). IEEE.

    Google Scholar 

  8. Taherkhani, E., Moaiyeri, M. H., & Angizi, S. (2017). Design of an ultra-efficient reversible full adder-subtractor in quantum-dot cellular automata. Optik-International Journal for Light and Electron Optics, 142, 557–563.

    Article  Google Scholar 

  9. Sonare, N., & Meena, S. (2016). A robust design of coplanar full adder and 4-bit Ripple Carry adder using quantum-dot cellular automata. In IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT), May 2016 (pp. 1860–1863). IEEE.

    Google Scholar 

  10. Hanninen, I., & Takala, J.: Robust adders based on quantum-dot cellular automata. In 2007 IEEE International Conference on Application-specific Systems, Architectures and Processors, ASAP. (pp. 391–396). IEEE, July 2007.

    Google Scholar 

  11. Wang, W., Walus, K., & Jullien, G. A.: Quantum-dot cellular automata adders. In 2003 Third IEEE Conference on Nanotechnology. IEEE-NANO 2003, August 2003 (Vol. 1, pp. 461–464). IEEE.

    Google Scholar 

  12. Bishnoi, B., Giridhar, M., Ghosh, B. & Nagaraju, M. (2012). Ripple carry adder using five input majority gates. In 2012 IEEE International Conference on Electron Devices and Solid State Circuit (EDSSC), December 2012, (pp. 1–4). IEEE.

    Google Scholar 

  13. Chudasama, A., & Sasamal, T. N. (2016). Implementation of 4 × 4 vedic multiplier using carry save adder in quantum-dot cellular automata. In 2016 International Conference on Communication and Signal Processing (ICCSP), April 2016 (pp. 1260–1264). IEEE.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bandan Kumar Bhoi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bhoi, B.K., Das, T., Misra, N.K., Rout, R. (2019). An Explicit Cell-Based Nesting Robust Architecture and Analysis of Full Adder. In: Khare, A., Tiwary, U., Sethi, I., Singh, N. (eds) Recent Trends in Communication, Computing, and Electronics. Lecture Notes in Electrical Engineering, vol 524. Springer, Singapore. https://doi.org/10.1007/978-981-13-2685-1_52

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-2685-1_52

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-2684-4

  • Online ISBN: 978-981-13-2685-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics