Skip to main content

Performance Evaluation of Multi-operands Floating-Point Adder

  • Conference paper
  • First Online:
Recent Trends in Communication, Computing, and Electronics

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 524))

Abstract

In this paper, an architecture is presented for a fused floating-point three operand adder unit. This adder executes two additions within a single unit. The purpose of this execution is to lessen total delay, die area, and power consumption in contrast with traditional addition method. Various optimization techniques including exponent comparison, alignment of significands, leading zero detection, addition, and rounding are used to diminish total delay, die area, and power consumption. In addition to this, the comparison is described of different blocks in term for die area, total delay, and power consumption. The proposed scheme is designed and implemented on Xilinx ISE Design 14.7 and synthesized on Synopsis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zuras, D., Cowlishaw, M., Aiken, A., Applegate, M., Bailey, D., Bass, S., et al. (2008). IEEE standard for floating-point arithmetic. IEEE Standards, 754–2008, 1–70.

    Google Scholar 

  2. Sohn, J., & Swartzlander, E. E. (2014). A fused floating-point three-term adder. IEEE Transactions on Circuits and Systems I: Regular Papers, 61(10), 2842–2850.

    Article  MathSciNet  Google Scholar 

  3. Popalghat, M., & Palsodkar, P. (2016). Implementation of fused floating point three term adder unit. In 2016 International Conference on Communication and Signal Processing (ICCSP) (pp. 1343–1346). IEEE.

    Google Scholar 

  4. Drusya, P., & Jacob, V. (2016). Area efficient fused floating point three term adder. In International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT) (pp. 1621–1625). IEEE.

    Google Scholar 

  5. Sohn, J., & Swartzlander, E. E. (2012). Improved architectures for a fused floating-point add-subtract unit. IEEE Transactions on Circuits and Systems I: Regular Papers, 59(10), 2285–2291.

    Article  MathSciNet  Google Scholar 

  6. Tenca, A.F. (2009). Multi-operand floating-point addition. In 2009 19th IEEE Symposium on Computer Arithmetic, ARITH 2009. (pp. 161–168). IEEE

    Google Scholar 

  7. Seidel, P. M., & Even, G. (2004). Delay-optimized implementation of IEEE floating-point addition. IEEE Transactions on Computers, 53(2), 97–113.

    Article  Google Scholar 

  8. Tao, Y., Deyuan, G., Xiaoya, F., & Xianglong, R. (2012). Three-operand floating-point adder. In 2012 IEEE 12th International Conference on Computer and Information Technology (CIT) (pp. 192–196). IEEE.

    Google Scholar 

  9. Underwood, K. (2004). Fpgas vs. cpus: trends in peak floating-point performance. In Proceedings of the 2004 ACM/SIGDA 12th international symposium on Field programmable gate arrays (pp. 171–180). ACM.

    Google Scholar 

  10. Monniaux, D. (2008). The pitfalls of verifying floating-point computations. ACM Transactions on Programming Languages and Systems (TOPLAS), 30(3), 12.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arvind Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kumar, A., Kumar, S., Raj Gautam, P., Verma, A., Rashid, T. (2019). Performance Evaluation of Multi-operands Floating-Point Adder. In: Khare, A., Tiwary, U., Sethi, I., Singh, N. (eds) Recent Trends in Communication, Computing, and Electronics. Lecture Notes in Electrical Engineering, vol 524. Springer, Singapore. https://doi.org/10.1007/978-981-13-2685-1_51

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-2685-1_51

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-2684-4

  • Online ISBN: 978-981-13-2685-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics