Skip to main content

Analysis of Electroencephalogram for the Recognition of Epileptogenic Area Using Ensemble Empirical Mode Decomposition

  • Conference paper
  • First Online:
  • 943 Accesses

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 524))

Abstract

Recognizing the epileptogenic area of a brain is done by analyzing the electroencephalogram signal. This area is responsible for the occurrence of seizure activity in a brain. In this paper, a methodology has been presented for the analysis of electroencephalogram to recognize epileptogenic area of brain. Ensemble empirical mode decomposition (EEMD) has been used for the estimation of intrinsic mode functions (IMFs), and six parameters consisting of statistical and frequency-based feature have been extracted from first ten IMFs. The ReliefF algorithm has been used to select the relevant features for the training of artificial neural network (ANN) for recognition of epileptogenic area. The methodology has been evaluated based on accuracy, specificity and sensitivity. The comparison has also been made with other methods of epileptogenic area detection where it has been observed that the proposed method outshines other.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Dastidar, S. G., Adeli, H., & Dadmehr, N. (2007). Mixed band wavelet chaos neural network methodology for epilepsy and epileptic seizure detection. IEEE Transactions on Biomedical Engineering, 54, 1545–1551.

    Article  Google Scholar 

  2. Epilepsy. http://www.who.int/mediacentre/factsheets/fs999/en/.

  3. Hassan, A. R., & Subasi, A. (2016). Automatic identification of epileptic seizures from EEG signals using linear programming boosting. Computer Methods and Programs in Biomedicine, 136, 65–77.

    Article  Google Scholar 

  4. Greenfield, L. J., Geyer, J. D., & Carney, P. R. (2012). Reading EEGs: A practical approach. Lippincott Williams & Wilkins.

    Google Scholar 

  5. Menon, V., & Crottaz-Herbette, S. (2005). Combined {EEG} and f{MRI} studies of human brain function. International Review of Neurobiology, 66, 291–321.

    Google Scholar 

  6. Zanzotto, F. M., & Croce, D. (2010). Comparing EEG/ERP-like and fMRI-like techniques for reading machine thoughts. In International Conference on Brain Informatics (pp. 133–144).

    Chapter  Google Scholar 

  7. Das, A. B., & Bhuiyan, M. I. H. (2016). Discrimination and classification of focal and non-focal EEG signals using entropy-based features in the EMD-DWT domain. Biomedical Signal Processing and Control, 29, 11–21.

    Article  Google Scholar 

  8. Sharma, R., Kumar, M., Pachori, R. B., & Acharya, U. R. (2017). Decision support system for focal EEG signals using tunable-Q wavelet transform. Journal of Computer Science, 20, 52–60.

    Google Scholar 

  9. Bhattacharyya, A., Pachori, R. B., & Acharya, U. R. (2017). Tunable-Q wavelet transform based multivariate sub-band fuzzy entropy with application to focal EEG signal analysis. Entropy, 19.

    Article  Google Scholar 

  10. Chen, D., Wan, S., & Bao, F. S. (2017). Epileptic focus localization using discrete wavelet transform based on interictal intracranial EEG. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 25, 413–425.

    Article  Google Scholar 

  11. Sharma, R., Pachori, R. B., & Rajendra Acharya, U. (2015). An integrated index for the identification of focal electroencephalogram signals using discrete wavelet transform and entropy measures. Entropy, 17, 5218–5240.

    Article  Google Scholar 

  12. Singh, G., Kaur, M., & Singh, D. (2016). Detection of epileptic seizure using wavelet transformation and spike based features. In 2015 2nd International Conference on Recent Advances in Engineering and Computational Sciences, RAECS 2015 (pp. 1–4).

    Google Scholar 

  13. Sharma, R., Pachori, R. B., & Gautam, S. (2014). Empirical mode decomposition based classification of focal and non-focal EEG signals. In 2014 International Conference on Medical Biometrics (pp. 135–140).

    Google Scholar 

  14. Sharma, R., Pachori, R. B., & Acharya, U. R. (2015). Application of entropy measures on intrinsic mode functions for the automated identification of focal electroencephalogram signals. Entropy, 17, 669–691.

    Article  Google Scholar 

  15. Rai, K., Bajaj, V., & Kumar, A. (2015). Features extraction for classification of focal and non-focal EEG signals. Lecture Notes in Electrical Engineering, 339, 599–605.

    Article  Google Scholar 

  16. Kaur, M., & Singh, G. (2017). Classification of seizure prone EEG signal using amplitude and frequency based parameters of intrinsic mode functions. Journal of Medical and Biological Engineering, 37, 540–553.

    Article  Google Scholar 

  17. Das, A. B., & Bhuiyan, M. I. H. (2016). Discrimination of focal and non-focal EEG signals using entropy-based features in EEMD and CEEMDAN domains. In 9th International Conference on Electrical and Computer Engineering (pp. 435–438).

    Google Scholar 

  18. Andrzejak, R. G., Schindler, K., & Rummel, C. (2012). Nonrandomness, nonlinear dependence, and nonstationarity of electroencephalographic recordings from epilepsy patients. Physical Review E, 86, 046206.

    Article  Google Scholar 

  19. The Bern-Barcelona EEG database. http://ntsa.upf.edu/downloads/andrzejak-rg-schindler-k-rummel-c-2012-nonrandomness-nonlinear-dependence-and.

  20. Yadav, R., Shah, A. K., Loeb, J. A., Swamy, M. N. S., & Agarwal, R. (2012). Morphology-based automatic seizure detector for intercerebral EEG recordings. IEEE Transactions on Biomedical Engineering, 59, 1871–1881.

    Article  Google Scholar 

  21. Wu, Z., & Huang, N. E. (2005). Ensemble empirical mode decomposition: A noise-assisted data analysis method. Advances in Adaptive Data Analysis, 1, 1–41.

    Article  Google Scholar 

  22. Bajaj, V., & Pachori, R. B. (2012). Classification of seizure and nonseizure EEG signals using empirical mode decomposition. IEEE Transactions on Information Technology in Biomedicine, 16, 1135–1142.

    Article  Google Scholar 

  23. van Putten, M. J., Kind, T., Visser, F., & Lagerburg, V. (2005). Detecting temporal lobe seizures from scalp EEG recordings: A comparison of various features. Clinical Neurophysiology, 116, 2480–2489.

    Article  Google Scholar 

  24. Borbély, A. A., & Neuhaus, H. U. (1979). Sleep-deprivation: Effects on sleep and EEG in the rat. Journal of Comparative Physiology, 133, 71–87.

    Article  Google Scholar 

  25. Kononenko, I. (1994). Estimating attributes: Analysis and extensions of RELIEF. In European Conference on Machine Learning (pp. 171–182). Berlin, Heidelberg: Springer.

    Chapter  Google Scholar 

  26. Weng, W., & Khorasani, K. (1996). An adaptive structure neural networks with application to EEG automatic seizure detection. Neural Networks, 9, 1223–1240.

    Article  Google Scholar 

  27. Hazarika, N., Chen, J. Z., Tsoi, A. C., & Sergejew, A. (1997). Classification of EEG signals using the wavelet transform. Signal Processing, 59, 61–72.

    Article  Google Scholar 

  28. Kumar, Y., Dewal, M. L., & Anand, R. S. (2014). Epileptic seizures detection in EEG using DWT-based ApEn and artificial neural network. Signal, Image and Video Processing, 8, 1323–1334.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manpreet Kaur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Singh, G., Singh, B., Kaur, M. (2019). Analysis of Electroencephalogram for the Recognition of Epileptogenic Area Using Ensemble Empirical Mode Decomposition. In: Khare, A., Tiwary, U., Sethi, I., Singh, N. (eds) Recent Trends in Communication, Computing, and Electronics. Lecture Notes in Electrical Engineering, vol 524. Springer, Singapore. https://doi.org/10.1007/978-981-13-2685-1_46

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-2685-1_46

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-2684-4

  • Online ISBN: 978-981-13-2685-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics