Skip to main content

Design of An Improved Micro-Electro-Mechanical-Systems Switch for RF Communication System

  • Conference paper
  • First Online:
Recent Trends in Communication, Computing, and Electronics

Abstract

This paper presents the design of improved MEMS shunt switch for RF communication applications. The switch was designed to provide a better performance in 10–100 GHz range. The switch was optimized in terms of width of the beam and air gap between the fixed type beam and dielectric layer to improve the isolation, insertion, and return loss. This study concludes that materials with high k-dielectrics and high Young’s modulus are desirable for better performance in high-frequency range. The isolation, insertion, and return loss for the designed switch are obtained as –12 dB, –0.05 dB, and –45 dB, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Persano, A., Quaranta, F., Martucci, M. C., Siciliano, P., & Cola, A. (2015). On the electrostatic actuation of capacitive RF MEMS switches on GaAs substrate. Sensors and Actuators A-Physical, 232, 202.

    Article  Google Scholar 

  2. Kenny, T. W. (2013). Experimental validation of topology optimization for RF MEMS capacitive switch design. Journal of Microelectromechanical Systems, 22, 1296.

    Article  Google Scholar 

  3. Rebeiz, G. M. (2003). RF MEMS, Theory Design and Technology. Hoboken, New Jersey: Wiley.

    Google Scholar 

  4. Philippine, M. A., Sigmund, O., Rebeiz, G. M., & Kenny, T. W. (2013). Topology optimization of stressed capacitive RF MEMS switches. Journal of Microelectromechanical Systems, 22, 206.

    Article  Google Scholar 

  5. Persano, A., Tazzoli, A., Farinelli, P., Meneghesso, G., Siciliano, P., & Quaranta, F. (2012). K-band capacitive MEMS switches on GaAs substrate: design, fabrication, and reliability. Microelectronics Reliability, 52, 2245.

    Article  Google Scholar 

  6. Lin, C., Hsu, C., & Dai, C. (2015). Fabrication of a micromachined capacitive switch using the CMOS-MEMS technology. Micromachines, 6, 1645.

    Article  Google Scholar 

  7. Angira, M., & Rangra, K. (2015). A low insertion loss, multi-band, fixed central capacitor based RF-MEMS switch. Microsystem Technologies, 21, 2259.

    Article  Google Scholar 

  8. Mishra, B., Panigrahi, R., & Alex, Z. C. (2009). Design of RF MEMS switch with high stability effect at the low actuation voltage. Sensors & Transducers, 111, 58.

    Google Scholar 

  9. Badia, M. F., Buitrago, E., & Ionescu, A. M. (2012). RF MEMS shunt capacitive switches using AlN compared to Si3N4 dielectric. Journal of Microelectromechanical Systems, 21, 1229.

    Article  Google Scholar 

  10. Zhu, Y., Han, L., Qin, M., & Huang, Q. (2014). Novel DC-40 GHz MEMS series-shunt switch for high isolation and high power applications. Sensors and Actuators A, 101.

    Article  Google Scholar 

  11. Fernandez-Bolanos, M., Perruisseau-Carrier, J., Dainesi, P., & Ionescu, A. M. (2008). RF MEMS capacitive switch on semi-suspended CPW using low-loss high-resistivity silicon substrate. Microelectronic Engineering, 85, 1039.

    Article  Google Scholar 

  12. Angira, M., & Rangra, K. (2015). Design and investigation of a low insertion loss, broadband, enhanced self and hold down power RF-MEMS switch. Microsystem Technologies, 21, 1173.

    Article  Google Scholar 

  13. Demirel, K., Yazgan, E., Demir, S., & Akinodotn, T. (2015). Cantilever type radiofrequency micromechanical systems shunt capacitive switch design and fabrication. Journal of Micro/Nanolithography, MEMS and MOEMS, 14, 35005.

    Article  Google Scholar 

  14. Koutsoureli, M., et al. (2016). An in depth analysis of pull-up capacitance-voltage characteristic for dielectric charging assessment of MEMS capacitive switches. Microelectronics Reliability. http://dx.doi.org/10.1016/j.microrel.2016.07.027.

  15. Larson, L. E., Hackett, R. H., Melendes, M. A., & Lohr, R. F. (1991). Micromachined microwave actuator (MIMAC) technology a new tuning approach for microwave integrated circuits. In Procedings IEEE Microwave and Millimeter-Wave Monolithic Circuits Symposium Digest (pp. 27–30).

    Google Scholar 

  16. Yao, J. J., & Chang, M. F. (1995). A surface micromachined miniature switch for telecommunications applications with signal frequencies from DC up to 4 GHz. In Proceedings. International Conference on Solid-State Sensors and Actuators Digest (pp. 384–387).

    Google Scholar 

  17. Agarwal, S., Kashyap, R., Guha, K., & Baishya, S. (2017). Modeling and analysis of capacitance in consideration of the deformation in RF MEMS shunt switch. Superlattices and Microstructures, 101.

    Google Scholar 

  18. Kurmendra, & Kumar, R. (2017). Design analysis, modeling and simulation of novel rectangular cantilever beam for MEMS sensors and energy harvesting applications. International Journal of Information Technology. https://doi.org/10.1007/s41870-017-0035-6.

    Article  Google Scholar 

  19. Guo, Z., Fu1, P., Liu, D., & Huang, M. (2017). Design and FEM simulation for a novel resonant silicon MEMS gyroscope with temperature compensation function. Microsystem Technologies. https://doi.org/10.1007/s00542-017-3524-4.

    Article  Google Scholar 

  20. Sravani, K. G., & Rao, K. S. (2017). Analysis of RF MEMS shunt capacitive switch with uniform and non-uniform meanders. Microsystem Technologies. https://doi.org/10.1007/s00542-017-3507-5.

    Article  Google Scholar 

  21. Coplanar Waveguide Calculator. http://www.microwave101.com/encyclopedia.

  22. Li, M., Zhao, J., You, Z., & Zhao, G. (2017). Design and fabrication of a low insertion loss capacitive RF MEMS switch with novel micro-structures for actuation. Solid-State Electronics,127, 32–37.

    Article  Google Scholar 

  23. Guha, K., Kumar, Mi, Parmar, A., & Baishya, S. (2016). Performance analysis of RF MEMS capacitive switch with non uniform meandering technique. Microsystem Technologies, 22, 2633.

    Article  Google Scholar 

Download references

Acknowledgements

This research work has been carried out in MEMS laboratory, Department of ECE, Rajiv Gandhi Central University, Itanagar, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kurmendra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kurmendra, Kumar, R., Pertin, O. (2019). Design of An Improved Micro-Electro-Mechanical-Systems Switch for RF Communication System. In: Khare, A., Tiwary, U., Sethi, I., Singh, N. (eds) Recent Trends in Communication, Computing, and Electronics. Lecture Notes in Electrical Engineering, vol 524. Springer, Singapore. https://doi.org/10.1007/978-981-13-2685-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-2685-1_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-2684-4

  • Online ISBN: 978-981-13-2685-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics