Skip to main content

Applications of Thermoelectrical Effect in SiC

  • Chapter
  • First Online:
Thermoelectrical Effect in SiC for High-Temperature MEMS Sensors

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAPPLSCIENCES))

  • 496 Accesses

Abstract

This chapter describes the applications of the thermoelectrical effect in silicon carbide for a wide range of applications in harsh environments. The thermoresistive effect in a single SiC layer for temperature sensing is known as thermistor, or resistive temperature detector will be mentioned. The temperature sensing in multiple SiC layers will also be discussed. The chapter also presents the application of SiC for thermal sensors based on the Joule heating effect such as thermal flow sensors, convective accelerometers and convective gyroscopes. Other applications towards gas sensing and cooling of MEMS devices are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T. Dinh, H.-P. Phan, A. Qamar, P. Woodfield, N.-T. Nguyen, D.V. Dao, Thermoresistive effect for advanced thermal sensors: fundamentals, design considerations, and applications. J. Microelectromech. Syst. (2017)

    Google Scholar 

  2. R.C.S. Freire, S.Y.C. Catunda, B.A. Luciano, Applications of thermoresistive sensors using the electric equivalence principle. IEEE Trans. Instrum. Meas. 58, 1823–1830 (2009)

    Article  Google Scholar 

  3. T. Nagai, K. Yamamoto, I. Kobayashi, Rapid response SiC thin-film thermistor. Rev. Sci. Instrum. 55, 1163–1165 (1984)

    Article  CAS  Google Scholar 

  4. T. Nagai, M. Itoh, SiC thin-film thermistors. IEEE Trans. Ind. Appl. 26, 1139–1143 (1990)

    Article  CAS  Google Scholar 

  5. E.A. de Vasconcelos, W.Y. Zhang, H. Uchida, T. Katsube, Potential of high-purity polycrystalline silicon carbide for thermistor applications. Jpn. J. Appl. Phys. 37, 5078 (1998)

    Article  Google Scholar 

  6. E.A. de Vasconcelos, S. Khan, W. Zhang, H. Uchida, T. Katsube, Highly sensitive thermistors based on high-purity polycrystalline cubic silicon carbide. Sens. Actuators A 83, 167–171 (2000)

    Article  Google Scholar 

  7. N. Boltovets, V. Kholevchuk, R. Konakova, Y.Y. Kudryk, P. Lytvyn, V. Milenin et al., A silicon carbide thermistor. Semicond. Phys. Quantum Electron. Optoelectron. 9, 67–70 (2006)

    CAS  Google Scholar 

  8. C. Chen, Evaluation of resistance–temperature calibration equations for NTC thermistors. Measurement 42, 1103–1111 (2009)

    Article  Google Scholar 

  9. A. Feteira, Negative temperature coefficient resistance (NTCR) ceramic thermistors: an industrial perspective. J. Am. Ceram. Soc. 92, 967–983 (2009)

    Article  CAS  Google Scholar 

  10. H. Al-Mumen, F. Rao, L. Dong, W. Li, Design, fabrication, and characterization of graphene thermistor, in 2013 8th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS) (2013), pp. 1135–1138

    Google Scholar 

  11. C. Yan, J. Wang, P.S. Lee, Stretchable graphene thermistor with tunable thermal index. ACS Nano 9, 2130–2137 (2015)

    Article  CAS  Google Scholar 

  12. V. Mitin, V. Kholevchuk, A. Semenov, A. Kozlovskii, N. Boltovets, V. Krivutsa et al., Nanocrystalline SiC film thermistors for cryogenic applications. Rev. Sci. Instrum. 89, 025004 (2018)

    Article  CAS  Google Scholar 

  13. H. Chang, X. Gong, S. Wang, P. Zhou, W. Yuan, On improving the performance of a triaxis vortex convective gyroscope through suspended silicon thermistors. IEEE Sens. J. 15, 946–955 (2015)

    Article  Google Scholar 

  14. G.S. Deep, R. Freire, P. Lobo, J.R. Neto, A. Lima, Dynamic response of thermoresistive sensors. IEEE Trans. Instrum. Meas. 41, 815–819 (1992)

    Article  Google Scholar 

  15. M. Prudenziati, A. Taroni, G. Zanarini, Semiconductor sensors: I—Thermoresistive devices. IEEE Trans. Ind. Electron. Control Instrum., 407–414 (1970)

    Article  Google Scholar 

  16. P. Fau, J. Bonino, J. Demai, A. Rousset, Thin films of nickel manganese oxide for NTC thermistor applications. Appl. Surf. Sci. 65, 319–324 (1993)

    Article  Google Scholar 

  17. A. Feltz, W. Pölzl, Spinel forming ceramics of the system FexNiyMn3–x–yO4 for high temperature NTC thermistor applications. J. Eur. Ceram. Soc. 20, 2353–2366 (2000)

    Article  CAS  Google Scholar 

  18. Z. Yue, J. Shan, X. Qi, X. Wang, J. Zhou, Z. Gui et al., Synthesis of nanocrystalline manganite powders via a gel auto-combustion process for NTC thermistor applications. Mater. Sci. Eng., B 99, 217–220 (2003)

    Article  Google Scholar 

  19. K. Wasa, T. Tohda, Y. Kasahara, S. Hayakawa, Highly-reliable temperature sensor using rf-sputtered SiC thin film. Rev. Sci. Instrum. 50, 1084–1088 (1979)

    Article  CAS  Google Scholar 

  20. E. Obermeier, High temperature microsensors based on polycrystalline diamond thin films, in The 8th International Conference on Solid-State Sensors and Actuators, 1995 and Eurosensors IX. Transducers’ 95 (1995), pp. 178–181

    Google Scholar 

  21. M.R. Werner, W.R. Fahrner, Review on materials, microsensors, systems and devices for high-temperature and harsh-environment applications. IEEE Trans. Industr. Electron. 48, 249–257 (2001)

    Article  Google Scholar 

  22. N. Zhang, C.-M. Lin, D.G. Senesky, A.P. Pisano, Temperature sensor based on 4H-silicon carbide pn diode operational from 20 C to 600 C. Appl. Phys. Lett. 104, 073504 (2014)

    Article  Google Scholar 

  23. S.M. Sze, K.K. Ng, Physics of Semiconductor Devices (Wiley, New York, 2006)

    Book  Google Scholar 

  24. D. Peters, R. Schörner, K.-H. Hölzlein, P. Friedrichs, Planar aluminum-implanted 1400 V 4H silicon carbide pn diodes with low on resistance. Appl. Phys. Lett. 71, 2996–2997 (1997)

    Article  CAS  Google Scholar 

  25. S. Rao, G. Pangallo, F. Pezzimenti, F.G. Della Corte, High-performance temperature sensor based on 4H-SiC Schottky diodes. IEEE Electron Device Lett. 36, 720–722 (2015)

    Article  CAS  Google Scholar 

  26. S. Rao, G. Pangallo, F.G. Della Corte, Highly linear temperature sensor based on 4H-silicon carbide pin diodes. IEEE Electron Device Lett. 36, 1205–1208 (2015)

    Article  CAS  Google Scholar 

  27. G. Chen, S. Bai, A. Liu, L. Wang, R.H. Huang, Y.H. Tao, et al., Fabrication and application of 1.7 kV SiC-Schottky diodes, in Materials Science Forum (2015), pp. 579–582

    Article  Google Scholar 

  28. J.B. Casady, W.C. Dillard, R.W. Johnson, U. Rao, A hybrid 6H-SiC temperature sensor operational from 25/spl deg/C to 500/spl deg/C. IEEE Trans. Compon. Packag. Manuf. Technol. Part A 19, 416–422 (1996)

    Article  CAS  Google Scholar 

  29. S. Rao, G. Pangallo, F.G. Della Corte, 4H-SiC pin diode as highly linear temperature sensor. IEEE Trans. Electron Devices 63, 414–418 (2016)

    Article  CAS  Google Scholar 

  30. S.B. Hou, P.E. Hellström, C.M. Zetterling, M. Östling, 4H-SiC PIN diode as high temperature multifunction sensor, in Materials Science Forum (2017), pp. 630–633

    Article  Google Scholar 

  31. J.T. Kuo, L. Yu, E. Meng, Micromachined thermal flow sensors—a review. Micromachines 3, 550–573 (2012)

    Article  Google Scholar 

  32. S.C. Bailey, G.J. Kunkel, M. Hultmark, M. Vallikivi, J.P. Hill, K.A. Meyer et al., Turbulence measurements using a nanoscale thermal anemometry probe. J. Fluid Mech. 663, 160–179 (2010)

    Article  CAS  Google Scholar 

  33. S.-T. Hung, S.-C. Wong, W. Fang, The development and application of microthermal sensors with a mesh-membrane supporting structure. Sens. Actuators, A 84, 70–75 (2000)

    Article  CAS  Google Scholar 

  34. C. Lyons, A. Friedberger, W. Welser, G. Muller, G. Krotz, R. Kassing, A high-speed mass flow sensor with heated silicon carbide bridges, in The Eleventh Annual International Workshop on Micro Electro Mechanical Systems, 1998. MEMS 98. Proceedings (1998), pp. 356–360

    Google Scholar 

  35. A.S. Cubukcu, E. Zernickel, U. Buerklin, G.A. Urban, A 2D thermal flow sensor with sub-mW power consumption. Sens. Actuators, A 163, 449–456 (2010)

    Article  CAS  Google Scholar 

  36. R. Ahrens, K. Schlote-Holubek, A micro flow sensor from a polymer for gases and liquids. J. Micromech. Microeng. 19, 074006 (2009)

    Article  Google Scholar 

  37. R.J. Adamec, D.V. Thiel, Self heated thermo-resistive element hot wire anemometer. IEEE Sens. J. 10, 847–848 (2010)

    Article  Google Scholar 

  38. C. Li, P.-M. Wu, J. Han, C.H. Ahn, A flexible polymer tube lab-chip integrated with microsensors for smart microcatheter. Biomed. Microdevice 10, 671–679 (2008)

    Article  CAS  Google Scholar 

  39. P. Bruschi, M. Dei, M. Piotto, A low-power 2-D wind sensor based on integrated flow meters. IEEE Sens. J. 9, 1688–1696 (2009)

    Article  Google Scholar 

  40. F. Keplinger, J. Kuntner, A. Jachimowicz, F. Kohl, Sensitive measurement of flow velocity and flow direction using a circular thermistor array, in GMe Workshop (2006), pp. 133–137

    Google Scholar 

  41. J. Robadey, O. Paul, H. Baltes, Two-dimensional integrated gas flow sensors by CMOS IC technology. J. Micromech. Microeng. 5, 243 (1995)

    Article  CAS  Google Scholar 

  42. J.-G. Lee, M.I. Lei, S.-P. Lee, S. Rajgopal, M. Mehregany, Micro flow sensor using polycrystalline silicon carbide. J. Sensor Sci. Technol. 18, 147–153 (2009)

    Article  Google Scholar 

  43. H. Berthet, J. Jundt, J. Durivault, B. Mercier, D. Angelescu, Time-of-flight thermal flowrate sensor for lab-on-chip applications. Lab Chip 11, 215–223 (2011)

    Article  CAS  Google Scholar 

  44. E. Meng, P.-Y. Li, Y.-C. Tai, A biocompatible Parylene thermal flow sensing array. Sens. Actuators, A 144, 18–28 (2008)

    Article  CAS  Google Scholar 

  45. T. Dinh, H.-P. Phan, D.V. Dao, P. Woodfield, A. Qamar, N.-T. Nguyen, Graphite on paper as material for sensitive thermoresistive sensors. J. Mater. Chem. C 3, 8776–8779 (2015)

    Article  CAS  Google Scholar 

  46. T. Dinh, H.-P. Phan, T.-K. Nguyen, A. Qamar, A.R.M. Foisal, T.N. Viet et al., Environment-friendly carbon nanotube based flexible electronics for noninvasive and wearable healthcare. J. Mater. Chem. C 4, 10061–10068 (2016)

    Article  CAS  Google Scholar 

  47. T. Dinh, H.-P. Phan, T.-K. Nguyen, A. Qamar, P. Woodfield, Y. Zhu et al., Solvent-free fabrication of biodegradable hot-film flow sensor for noninvasive respiratory monitoring. J. Phys. D Appl. Phys. 50, 215401 (2017)

    Article  Google Scholar 

  48. T. Dinh, H.-P. Phan, A. Qamar, P. Woodfield, N.-T. Nguyen, D.V. Dao, Thermoresistive effect for advanced thermal sensors: Fundamentals, design considerations, and applications. J. Microelectromech. Syst. 26, 966–986 (2017)

    Article  Google Scholar 

  49. S. Noh, J. Seo, E. Lee, The fabrication by using surface MEMS of 3C-SiC micro-heaters and RTD sensors and their resultant properties. Trans. Electr. Electron. Mater 10, 131–134 (2009)

    Article  Google Scholar 

  50. F. Mailly, A. Giani, R. Bonnot, P. Temple-Boyer, F. Pascal-Delannoy, A. Foucaran et al., Anemometer with hot platinum thin film. Sens. Actuators, A 94, 32–38 (2001)

    Article  CAS  Google Scholar 

  51. T. Dinh, H.-P. Phan, T.-K. Nguyen, V. Balakrishnan, H.-H. Cheng, L. Hold et al., Unintentionally doped epitaxial 3C-SiC (111) nanothin film as material for highly sensitive thermal sensors at high temperatures. IEEE Electron Device Lett. 39, 580–583 (2018)

    Article  Google Scholar 

  52. V. Balakrishnan, T. Dinh, H.-P. Phan, D.V. Dao, N.-T. Nguyen, Highly sensitive 3C-SiC on glass based thermal flow sensor realized using MEMS technology. Sens. Actuators A Phys. (2018)

    Google Scholar 

  53. S. Issa, H. Sturm, W. Lang, Modeling of the response time of thermal flow sensors. Micromachines 2, 385–393 (2011)

    Article  Google Scholar 

  54. C. Sosna, T. Walter, W. Lang, Response time of thermal flow sensors with air as fluid. Sens. Actuators, A 172, 15–20 (2011)

    Article  CAS  Google Scholar 

  55. M.I. Lei, Silicon Carbide High Temperature Thermoelectric Flow Sensor (Case Western Reserve University, 2011)

    Google Scholar 

  56. A.M. Leung, J. Jones, E. Czyzewska, J. Chen, M. Pascal, Micromachined accelerometer with no proof mass, in Electron Devices Meeting, 1997. IEDM’97. Technical Digest., International (1997), pp. 899–902

    Google Scholar 

  57. “Accelerometer,” ed: Google Patents (1948)

    Google Scholar 

  58. A. Leung, J. Jones, E. Czyzewska, J. Chen, B. Woods, Micromachined accelerometer based on convection heat transfer, in The Eleventh Annual International Workshop on Micro Electro Mechanical Systems, 1998. MEMS 98. Proceedings (1998), pp. 627–630

    Google Scholar 

  59. X. Luo, Y. Yang, F. Zheng, Z. Li, Z. Guo, An optimized micromachined convective accelerometer with no proof mass. J. Micromech. Microeng. 11, 504 (2001)

    Article  CAS  Google Scholar 

  60. X. Luo, Z. Li, Z. Guo, Y. Yang, Thermal optimization on micromachined convective accelerometer. Heat Mass Transf. 38, 705–712 (2002)

    Article  Google Scholar 

  61. X. Luo, Z. Li, Z. Guo, Y. Yang, Study on linearity of a micromachined convective accelerometer. Microelectron. Eng. 65, 87–101 (2003)

    Article  Google Scholar 

  62. F. Mailly, A. Giani, A. Martinez, R. Bonnot, P. Temple-Boyer, A. Boyer, Micromachined thermal accelerometer. Sens. Actuators, A 103, 359–363 (2003)

    Article  CAS  Google Scholar 

  63. F. Mailly, A. Martinez, A. Giani, F. Pascal-Delannoy, A. Boyer, Design of a micromachined thermal accelerometer: thermal simulation and experimental results. Microelectron. J. 34, 275–280 (2003)

    Article  CAS  Google Scholar 

  64. L. Lin, J. Jones, A liquid-filled buoyancy-driven convective micromachined accelerometer. J. Microelectromech. Syst. 14, 1061–1069 (2005)

    Article  Google Scholar 

  65. V.T. Dau, D.V. Dao, S. Sugiyama, A 2-DOF convective micro accelerometer with a low thermal stress sensing element. Based on work presented at IEEE Sensor 2006: The 5th IEEE Conference on Sensors, Oct. 22–25, 2006, Daegu, Korea. Smart Mater. Struct. 16, 2308 (2007)

    Article  Google Scholar 

  66. B.T. Tung, D.V. Dao, R. Amarasinghe, N. Wada, H. Tokunaga, S. Sugiyama, Development of a 3-DOF micro accelerometer with wireless readout 電気学会論文誌 E (センサ・マイクロマシン部門誌) 128, 235–239 (2008)

    Article  Google Scholar 

  67. S.-H. Tsang, A.H. Ma, K.S. Karim, A. Parameswaran, A.M. Leung, Monolithically fabricated polymermems 3-axis thermal accelerometers designed for automated wirebonder assembly, in IEEE 21st International Conference on Micro Electro Mechanical Systems, 2008. MEMS 2008 (2008), pp. 880–883

    Google Scholar 

  68. S.-J. Chen, C.-H. Shen, A novel two-axis CMOS accelerometer based on thermal convection. IEEE Trans. Instrum. Meas. 57, 1572–1577 (2008)

    Article  Google Scholar 

  69. U. Park, D. Kim, J. Kim, I.-K. Moon, C.-H. Kim, Development of a complete dual-axis micromachined convective accelerometer with high sensitivity. Sens. IEEE 2008, 670–673 (2008)

    Google Scholar 

  70. J. Bahari, J.D. Jones, A.M. Leung, Sensitivity improvement of micromachined convective accelerometers. J. Microelectromech. Syst. 21, 646–655 (2012)

    Article  CAS  Google Scholar 

  71. R. Amarasinghe, D.V. Dao, T. Toriyama, S. Sugiyama, Development of miniaturized 6-axis accelerometer utilizing piezoresistive sensing elements. Sens. Actuators, A 134, 310–320 (2007)

    Article  CAS  Google Scholar 

  72. V.T. Dau, D.V. Dao, T. Shiozawa, H. Kumagai, S. Sugiyama, Development of a dual-axis thermal convective gas gyroscope. J. Micromech. Microeng. 16, 1301 (2006)

    Article  CAS  Google Scholar 

  73. H. Kumagai, S. Sugiyama, A single-axis thermal convective gas gyroscope. Sens. Mater. 17, 453–463 (2005)

    Google Scholar 

  74. D.V. Dao, V.T. Dau, T. Shiozawa, S. Sugiyama, Development of a dual-axis convective gyroscope with low thermal-induced stress sensing element. J. Microelectromech. Syst. 16, 950 (2007)

    Article  Google Scholar 

  75. V.T. Dau, D.V. Dao, T.X. Dinh, T. Shiozawa, S. Sugiyama, Optimization of PZT diaphragm pump for the convective gyroscope. 電気学会論文誌 E (センサ・マイクロマシン部門誌) 127, 347–352 (2007)

    Article  Google Scholar 

  76. V.T. Dau, D.V. Dao, T. Shiozawa, S. Sugiyama, Simulation and fabrication of a convective gyroscope. IEEE Sens. J. 8, 1530–1538 (2008)

    Article  Google Scholar 

  77. A. Harley-Trochimczyk, A. Rao, H. Long, A. Zettl, C. Carraro, R. Maboudian, Low-power catalytic gas sensing using highly stable silicon carbide microheaters. J. Micromech. Microeng. 27, 045003 (2017)

    Article  Google Scholar 

  78. T. Dinh, H.-P. Phan, N. Kashaninejad, T.-K. Nguyen, D.V. Dao, N.-T. Nguyen, An on-chip SiC MEMS device with integrated heating, sensing and microfluidic cooling systems. Adv. Mater. Interfaces 1, 1 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toan Dinh .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dinh, T., Nguyen, NT., Dao, D.V. (2018). Applications of Thermoelectrical Effect in SiC. In: Thermoelectrical Effect in SiC for High-Temperature MEMS Sensors. SpringerBriefs in Applied Sciences and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-13-2571-7_6

Download citation

Publish with us

Policies and ethics