Skip to main content

Abstract

Biofilm is a kind of biological structure with high complexity and high-self-organizing characteristic. It consists of many kinds of microorganisms and biological matrixes (polysaccharide, protein, fatty acid, etc.), with special structure and ecological function. It plays an important role in microbial colonization, niche construction and environmental adaptation. Many microbial behaviors, such as adventitious infection, toxin production, drug resistance, biofouling, mesh blocking, etc., are related to biofilm. The generation of these events is inundated with diverse microbial behaviors, including signal communication, cooperation/competition, labor division, “bacterial intelligence” under stress condition, etc. These features show more and more sociological characteristics of the biofilm, which provides a new perspective to know biofilm better. Therefore, based on the structure of biofilm, we took the communication signals, collaboration, and intelligent resistance (responsed to the ecological stress, co-evolution) inside biofilm as the core to elaborate its social characteristics, in order to better understand the social interactions in bioflim.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Clevenger, K. D., & Fast, W. (2012). “Clicking” on the lights to reveal bacterial social networking. Chembiochem, 13, 508–510.

    Article  CAS  PubMed  Google Scholar 

  2. Xin, B. C., Xu, Y. L., Li, Y. L., Liu, T. J., & Yang, D. Q. (2010). Communication and cooperation of different microorganisms within biofilms. Scientific Sinica Vitae (in chinese), 11, 1002–1013.

    Google Scholar 

  3. Stevens, A. M., Schuster, M., & Rumbaugh, K. P. (2012). Working together for the common good: Cell-cell communication in bacteria. Journal of Bacteriology, 194, 2131–2141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Martin, M., Hölscher, T., Dragoš, A., et al. (2016). Laboratory evolution of microbial interactions in bacterial biofilms. Journal of Bacteriology, 198(19), 2564–2571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Connell, J. L., Whiteley, M., & Shear, J. B. (2011). Sociomicrobiology in engineered landscapes. Nature Chemical Biology, 8(1), 10–13.

    Article  PubMed  CAS  Google Scholar 

  6. Sun, J., Yuan, Q. G., & Liu, Z. (2009). The cooperation behaviour and social character in microbial communities. Foreign Medical Sciences (in Chinese), 36, 444–447.

    Google Scholar 

  7. Dragoš, A., & Kovács, Á. T. (2017). The peculiar functions of the bacterial extracellular matrix. Trends in Microbiology, 25, 257, pii: S0966-842X(16)30216-5.

    Article  PubMed  CAS  Google Scholar 

  8. Mielichsüss, B., & Lopez, D. (2015). Molecular mechanisms involved in Bacillus subtilis biofilm formation. Environmental Microbiology, 17, 555–565.

    Article  Google Scholar 

  9. Cairns, L. S., Hobley, L., & Stanley-Wall, N. R. (2014). Biofilm formation by Bacillus subtilis: New insights into regulatory strategies and assembly mechanisms. Molecular Microbiology, 93, 587–598.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. O’Toole, G. A., & Kolter, R. (1998). Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Molecular Microbiology, 30, 295–304.

    Article  PubMed  Google Scholar 

  11. Pratt, L. A., & Kolter, R. (1998). Genetic analysis of Escherichia coli biofilm formation: Roles of flagella, motility, chemotaxis and type i pili. Molecular Microbiology, 30, 285–293.

    Article  CAS  PubMed  Google Scholar 

  12. Watnick, P. I., Fullner, K. J., & Kolter, R. (1999). A role for the mannose-sensitive hemagglutinin in biofilm formation by Vibrio cholerae EI Tor. Journal of Bacteriology, 181, 3606–3609.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Beyenal, H., Lewandowski, Z., & Harkin, G. (2004). Quantifying biofilm structure: Facts and fiction. Biofouling, 20, 1–23.

    Article  CAS  PubMed  Google Scholar 

  14. Renner, L. D., & Weibel, D. B. (2011). Physicochemical regulation of biofilm formation. MRS Bulletin, 36, 347–355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bullitt, E., & Makowski, L. (1995). Structural polymorphism of bacterial adhesion pili. Nature, 373, 164–167.

    Article  CAS  PubMed  Google Scholar 

  16. Thomas, W. E., Nilsson, L. M., Forero, M., et al. (2004). Shear-dependent ‘stick-and-roll’ adhesion of type 1 fimbriated Escherichia coli. Molecular Microbiology, 53, 1545–1557.

    Article  CAS  PubMed  Google Scholar 

  17. Flemming, H. C., & Wingender, J. (2010). The biofilm matrix. Nature Reviews Microbiology, 8, 623–633.

    Article  CAS  PubMed  Google Scholar 

  18. Borlee, B. R., Goldman, A. D., Murakami, K., et al. (2010). Pseudomonas aeruginosa uses acyclic-di-gmp-regulated adhesin to reinforce the biofilm extracellular matrix. Molecular Microbiology, 75, 827.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Schlafer, S., & Meyer, R. L. (2016). Confocal microscopy imaging of the biofilm matrix. Journal of Microbiological Methods. pii: S0167-7012(16)30036-7.

    Google Scholar 

  20. Sutherland, I. W. (2001). The biofilm matrix – an immobilized but dynamic microbial environment. Trends in Microbiology, 9, 222–227.

    Article  CAS  PubMed  Google Scholar 

  21. Stewart, P. S. (2002). Mechanisms of antibiotic resistance in bacterial biofilms. International Journal of Medical Microbiology, 292, 107–113.

    Article  CAS  PubMed  Google Scholar 

  22. Leck, C., & Bigg, E. K. (2005). Biogenic particles in the surface microlayer and overlaying atmosphere in the central arctic ocean during summer. Tellus Series B: Chemical and Physical Meteorology, 57, 305–316.

    Article  Google Scholar 

  23. Dunne, W. M., Jr., Mason, E. O., Jr., & Kaplan, S. L. (1993). Diffusion of rifampin and vancomycin through a Staphylococcus epidermidis biofilm. Antimicrobial Agents and Chemotherapy, 37(12), 2522–2526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Epstein, A. K. (2011). Bacterial biofilm shows persistent resistance to liquid wetting and gas penetration. Proceedings of the National Academy of Sciences of the United States of America, 108, 995–1000.

    Article  CAS  PubMed  Google Scholar 

  25. Guo, L., Hu, W., He, X., et al. (2013). Investigating acid production by streptococcus mutans with a surface-displayed pH-sensitive green fluorescent protein. PLoS One, 8, e57182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang, S., Liu, X., Liu, H., et al. (2015). The exopolysaccharide psl-edna interaction enables the formation of a biofilm skeleton in pseudomonas aeruginosa. Environmental Microbiology Reports, 7, 330–340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Payne, D. E., & Boles, B. R. (2016). Emerging interactions between matrix components during biofilm development. Current Genetics, 62, 137–141.

    Article  CAS  PubMed  Google Scholar 

  28. Matsuyama, T., & Nakagawa, Y. (1996). Surface-active exolipids: Analysis of absolute chemical structures and biological functions. Journal of Microbiological Methods, 25, 165–175.

    Article  CAS  Google Scholar 

  29. Teschler, J. K., Zamoranosánchez, D., Utada, A. S., et al. (2015). Living in the matrix: Assembly and control of Vibrio cholerae biofilms. Nature Reviews Microbiology, 13, 255–268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Harmsen, M., Yang, L., Pamp, S. J., et al. (2010). An update on Pseudomonas aeruginosa biofilm formation, tolerance, and dispersal. FEMS Immunology & Medical Microbiology, 59, 253–268.

    Article  CAS  Google Scholar 

  31. Velicer, G. J. (2003). Social strife in the microbial world. Trends in Microbiology, 11, 330–337.

    Article  CAS  PubMed  Google Scholar 

  32. West, S. A., Griffin, A. S., Gardner, A., et al. (2006). Social evolution theory for microorganisms. Nature Reviews Microbiology, 4, 597–607.

    Article  CAS  PubMed  Google Scholar 

  33. Foster, K. R., Parkinson, K., & Thompson, C. R. L. (2007). What can microbial genetics teach sociobiology? Trends in Genetics, 23, 74–80.

    Article  CAS  PubMed  Google Scholar 

  34. Bassler, B. L., & Losick, R. (2006). Bacterially speaking. Cell, 125, 237–246.

    Article  CAS  PubMed  Google Scholar 

  35. Davey, M. E., & O’Toole, G. A. (2000). Microbial biofilms: From ecology to molecular genetics. Microbiology and Molecular Biology Reviews, 64, 847–867.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hallstoodley, L., Costerton, J. W., & Stoodley, P. (2004). Bacterial biofilms: From the natural environment to infectious diseases. Nature Reviews. Microbiology, 2, 95–108.

    Article  CAS  Google Scholar 

  37. Jr, D. W. (2002). Bacterial adhesion: Seen any good biofilms lately? Clinical Microbiology Reviews, 15, 155–166.

    Article  CAS  Google Scholar 

  38. Davies, D. G., Parsek, M. R., Pearson, J. P., et al. (1998). The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science, 280, 295–298.

    Article  CAS  PubMed  Google Scholar 

  39. Hammer, B. K., & Bassler, B. L. (2004). Quorum sensing controls biofilm formation in Vibrio cholerae. Molecular Microbiology, 51, 101–104.

    Article  Google Scholar 

  40. Sakuragi, Y., & Kolter, R. (2007). Quorum-sensing regulation of the biofilm matrix genes (pel) of Pseudomonas aeruginosa. Journal of Bacteriology, 189, 5383–5386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Talagrandreboul, E., Jumasbilak, E., & Lamy, B. (2017). The social life of Aeromonas through biofilm and quorum sensing systems. Frontiers in Microbiology, 8, 37.

    Google Scholar 

  42. Whiteley, M., Bangera, M. G., Bumgarner, R. E., et al. (2001). Gene expression in Pseudomonas aeruginosa biofilms. Nature, 413, 860–864.

    Article  CAS  PubMed  Google Scholar 

  43. Wang, Y., Dai, Y., Zhang, Y., Hu, Y. B., Yang, B. Y., & Chen, S. Y. (2007). The effects of QS degrade geneson bioflim of PAO1. Science in China (Series C) (in Chinese), 37(2), 234–240.

    Google Scholar 

  44. Tan, C. H., Kai, S. K., Xie, C., et al. (2015). Community quorum sensing signalling and quenching: Microbial granular biofilm assembly. Npj Biofilms & Microbiomes, 1, 15006.

    Article  Google Scholar 

  45. Heithoff, D. M., & Mahan, M. J. (2004). Vibrio cholerae biofilms: Stuck between a rock and a hard place. Journal of Bacteriology, 186, 4835–4837.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhu, J., & Mekalanos, J. J. (2003). Quorum sensing-dependent biofilms enhance colonization in Vibrio cholerae. Developmental Cell, 5, 647–656.

    Article  CAS  PubMed  Google Scholar 

  47. Kim, S. M., Park, J. H., Lee, H. S., et al. (2013). Luxr homologue smcr is essential for Vibrio vulnificus pathogenesis and biofilm detachment, and its expression is induced by host cells. Infection and Immunity, 81, 3721–3730.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Rice, S. A., Koh, K. S., Queck, S. Y., et al. (2005). Biofilm formation and sloughing in Serratia marcescens are controlled by quorum sensing and nutrient cues. Journal of Bacteriology, 187, 3477–3485.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Puskas, A., Greenberg, E. P., Kaplan, S., et al. (1998). A quorum-sensing system in the free-living photosynthetic bacterium Rhodobacter sphaeroides. Journal of Bacteriology, 179, 7530–7537.

    Article  Google Scholar 

  50. Majerczyk, C., Schneider, E., & Greenberg, E. P. (2016). Quorum sensing control of type vi secretion factors restricts the proliferation of quorum-sensing mutants. eLife, e14712.

    Google Scholar 

  51. Davies, D. G., & Marques, C. N. H. (2009). A fatty acid messenger is responsible for inducing dispersion in microbial biofilms. Journal of Bacteriology, 191, 1393–1403.

    Article  CAS  PubMed  Google Scholar 

  52. D’Argenio, D. A., & Miller, S. I. (2004). Cyclic di-GMP as a bacterial second messenger. Microbiology, 150(8), 2497–2502.

    Article  PubMed  CAS  Google Scholar 

  53. Sondermann, H., Shikuma, N. J., & Yildiz, F. H. (2012). You’ve come a long way: C-di-gmp signaling. Current Opinion in Microbiology, 15, 140–146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Römling, U., Galperin, M. Y., & Gomelsky, M. (2013). Cyclic di-gmp: The first 25 years of a universal bacterial second messenger. Microbiology and Molecular Biology Reviews, 77, 1–52.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  55. Tal, R., Wong, H. C., Calhoon, R., et al. (1998). Three cdg operons control cellular turnover of cyclic di-GMP in Acetobacter xylinum: Genetic organization and occurrence of conserved domains in isoenzymes. Journal of Bacteriology, 180(17), 4416–4425.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Michael, Y. G., Anastasia, N. N., & Eugene, V. K. (2001). Novel domains of the prokaryotic two component signal transduction systems. FEMS Microbiology Letters, 203(1), 11–21.

    Article  Google Scholar 

  57. Souichiro Kato, K. H., & Watanabe, K. (2013). Iron-oxide minerals affect extracellular electron-transfer paths of geobacter spp. Microbes and Environments, 28, 141–148.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Pfeffer, C., Larsen, S., Song, J., et al. (2012). Filamentous bacteria transport electrons over centimetre distances. Nature, 491, 218–221.

    Article  CAS  PubMed  Google Scholar 

  59. Masi, E., Ciszak, M., Santopolo, L., et al. (2015). Electrical spiking in bacterial biofilms. Journal of the Royal Society Interface, 12, 20141036–20141036.

    Article  PubMed Central  Google Scholar 

  60. Liu, J., Prindle, A., Humphries, J., et al. (2015). Metabolic codependence gives rise to collective oscillations within biofilms. Nature, 523, 550–554.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Humphries, J., Xiong, L., Liu, J., et al. (2017). Species-independent attraction to biofilms through electrical signaling. Cell, 168, 200–209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Madsen, J. S., Røder, H. L., Russel, J., et al. (2016). Co-existence facilitates interspecific biofilm formation in complex microbial communities. Environmental Microbiology, 18, 2565–2574.

    Article  CAS  PubMed  Google Scholar 

  63. Burmølle, M., Hansen, L. H., & Sørensen, S. J. (2007). Establishment and early succession of a multispecies biofilm composed of soil bacteria. Microbial Ecology, 54, 352–362.

    Article  PubMed  Google Scholar 

  64. Andersson, S. (2008). Biofilm formation and interactions of bacterial strains found in wastewater treatment systems. FEMS Microbiology Letters, 283, 83–90.

    Article  CAS  PubMed  Google Scholar 

  65. Ren, D., Madsen, J. S., Sørensen, S. J., et al. (2015). High prevalence of biofilm synergy among bacterial soil isolates in cocultures indicates bacterial interspecific cooperation. The ISME Journal, 9(1), 81–89.

    Article  CAS  PubMed  Google Scholar 

  66. Mcglynn, S. E. (2015). Single cell activity reveals direct electron transfer in methanotrophic consortia. Nature, 526, 531–535.

    Article  CAS  PubMed  Google Scholar 

  67. Flemming, H. C., Wingender, J., Szewzyk, U., et al. (2016). Biofilms: An emergent form of bacterial life. Nature Reviews Microbiology, 14, 563–575.

    Article  CAS  PubMed  Google Scholar 

  68. Auguet, O., Pijuan, M., Batista, J., et al. (2015). Changes in microbial biofilm communities during colonization of sewer systems. Applied and Environmental Microbiology, 81, 7271–7280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Nadell, C., Ricaurte, D., Yan, J., et al. (2016). Flow environment and matrix structure interact to determine spatial competition in pseudomonas aeruginosa biofilms. eLife, e21855.

    Google Scholar 

  70. Nadell, C. D., Drescher, K., & Foster, K. R. (2016). Spatial structure, cooperation and competition in biofilms. National Reviews Microbiology, 14, 589–600.

    Article  CAS  Google Scholar 

  71. Basler, M., Ho, B. T., & Mekalanos, J. J. (2013). Tit-for-tat: Type vi secretion system counterattack during bacterial cell-cell interactions. Cell, 152, 884–894.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Raaijmakers, J. M., & Mazzola, M. (2012). Diversity and natural functions of antibiotics produced by beneficial and plant pathogenic bacteria. Annual Review of Phytopathology, 50, 403–424.

    Article  CAS  PubMed  Google Scholar 

  73. Sun, X. J., Gao, C. H., & Huang, Q. Y. (2017). Multispecies biofilms in natural environments: An overview of research methods and bacterialsocial interactions. Journal of Agriculture: Resource and Environment (in Chinese), 34, 6–14.

    Google Scholar 

  74. Burmølle, M., Ren, D., Bjarnsholt, T., et al. (2014). Interactions in multispecies biofilms: Do they actually matter? Trends in Microbiology, 22, 84–91.

    Article  PubMed  CAS  Google Scholar 

  75. Mitri, S., & Foster, K. R. (2013). The genotypic view of social interactions in microbial communities. Annual Review of Genetics, 47, 247–273.

    Article  CAS  PubMed  Google Scholar 

  76. Zelezniak, A., Andrejev, S., Ponomarova, O., et al. (2015). Metabolic dependencies drive species co-occurrence in diverse microbial communities. Proceedings of the National Academy of Sciences of the United States of America, 112, 6449–6454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Gjermansen, M., Nilsson, M., Yang, L., et al. (2005). Characterization of starvation-induced dispersion in Pseudomonas putida biofilms: Genetic elements and molecular mechanisms. Molecular Microbiology, 7, 894–906.

    CAS  Google Scholar 

  78. Newell, P. D., Boyd, C. D., Sondermann, H., et al. (2011). A c-di-gmp effector system controls cell adhesion by inside-out signaling and surface protein cleavage. PLoS Biology, 9, e1000587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kai, M. T., Saville, R. M., Shukla, S., et al. (2005). Induction of rapid detachment in Shewanella oneidensis mr-1 biofilms. Journal of Bacteriology, 187, 1014–1021.

    Article  CAS  Google Scholar 

  80. An, S., Wu, J., & Zhang, L. H. (2010). Modulation of Pseudomonas aeruginosa biofilm dispersal by a cyclic-di-gmp phosphodiesterase with a putative hypoxia-sensing domain. Applied and Environmental Microbiology, 76, 8160–8173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Saville, R. M., Rakshe, S., Haagensen, J. A. J., et al. (2011). Energy-dependent stability of Shewanella oneidensis mr-1 biofilms. Journal of Bacteriology, 193, 3257–3264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Hagai, E., Dvora, R., Havkinblank, T., et al. (2013). Surface-motility induction, attraction and hitchhiking between bacterial species promote dispersal on solid surfaces. The ISME Journal, 8, 1147–1151.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Bolhuis, H., Cretoiu, M. S., & Stal, L. J. (2014). Molecular ecology of microbial mats. FEMS Microbiology Ecology, 90, 335–350.

    CAS  PubMed  Google Scholar 

  84. Wong, H. L., Ahmed-Cox, A., & Burns, B. P. (2016). Molecular ecology of hypersaline microbial mats: Current insights and new directions. Microorganisms, 4: pii, E6.

    Google Scholar 

  85. Abrudan, M. I., Smakman, F., Grimbergen, A. J., et al. (2015). Socially mediated induction and suppression of antibiosis during bacterial coexistence. Proceedings of the National Academy of Sciences of the United States of America, 112, 11054–11059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Pollak, S. (2016). Facultative cheating supports the coexistence of diverse quorum-sensing alleles. Proceedings of the National Academy of Sciences of the United States of America, 113, 2152–2157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Hughes, G., & Webber, M. A. (2017). Novel approaches to the treatment of bacterial biofilm infections[J]. British Journal of Pharmacology, 174(14), 2237–2246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Król, J. E., Nguyen, H. D., Rogers, L. M., et al. (2011). Increased transfer of a multidrug resistance plasmid in Escherichia coli biofilms at the air-liquid interface. Applied and Environmental Microbiology, 77, 5079–5088.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Koraimann, G., & Wagner, M. A. (2014). Social behavior and decision making in bacterial conjugation. Frontiers in Cellular and Infection Microbiology, 4, 54.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Chen, Y., Liu, S., Liang, Z., et al. (2016). Quorum sensing and microbial drug resistance. Hereditas, 38(10), 881–893.

    PubMed  Google Scholar 

  91. Gambino, M., & Cappitelli, F. (2016). Mini-review: Biofilm responses to oxidative stress. Biofouling, 32, 167–178.

    Article  CAS  PubMed  Google Scholar 

  92. Tarnita, C. E. (2017). The ecology and evolution of social behavior in microbes. The Journal of Experimental Biology, 220(Pt 1), 18–24.

    Article  PubMed  Google Scholar 

  93. Saintruf, C., Garfatraoré, M., Collin, V., et al. (2014). Massive diversification in aging colonies of Escherichia coli. Journal of Bacteriology, 196, 3059–3073.

    Article  CAS  Google Scholar 

  94. Depas, W. H., Hufnagel, D. A., Lee, J. S., et al. (2013). Iron induces bimodal population development by Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 110, 2629–2634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Painter, K. L., Strange, E., Parkhill, J., et al. (2015). Staphylococcus aureus adapts to oxidative stress by producing H2O2-resistant small colony variants via the SOS response. Infection and Immunity, 83, 1830–1844.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Garde, C., Welch, M., Ferkinghoffborg, J., et al. (2015). Microbial biofilm as a smart material. Sensors, 15, 4229–4241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Piludu, M., Lantini, M. S., Cossu, M., et al. (2006). Salivary histatins in human deep posterior lingual glands (of von ebner). Archives of Oral Biology, 51, 967–973.

    Article  CAS  PubMed  Google Scholar 

  98. Brissette, C. A., & Lukehart, S. A. (2007). Mechanisms of decreased susceptibility to β-defensins by Treponema denticola. Infection and Immunity, 75, 2307–2315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Wickström, C., Herzberg, M. C., Beighton, D., et al. (2009). Proteolytic degradation of human salivary MUC5B by dental biofilms. Microbiology, 155, 2866–2872.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Wickström, C., & Svensäter, G. (2008). Salivary gel-forming mucin MUC5B – a nutrient for dental plaque bacteria. Oral Microbiology and Immunology, 23, 177–182.

    Article  PubMed  Google Scholar 

  101. Webb, J. S., Givskov, M., & Kjelleberg, S. (2003). Bacterial biofilms: Prokaryotic adventures in multicellularity. Current Opinion in Microbiology, 6, 578–585.

    Article  CAS  PubMed  Google Scholar 

  102. Ehrlich, P. R., & Raven, P. H. (1964). Butterflies and plants: A study in coevolution. Evolution, 18, 586–608.

    Article  Google Scholar 

  103. Boots, M., & Mealor, M. (2007). Local interactions select for lower pathogen infectivity. Science, 315, 1284–1286.

    Article  CAS  PubMed  Google Scholar 

  104. Wild, G., Gardner, A., & West, S. A. (2009). Adaptation and the evolution of parasite virulence in a connected world. Nature, 459, 983–986.

    Article  CAS  PubMed  Google Scholar 

  105. Gyllenberg, M., Parvinen, K., & Dieckmann, U. (2002). Evolutionary suicide and evolution of dispersal in structured metapopulations. Journal of Mathematical Biology, 45, 79–105.

    Article  PubMed  Google Scholar 

  106. Høiby, N., Bjarnsholt, T., Givskov, M., et al. (2010). Antibiotic resistance of bacterial biofilms. International Journal of Antimicrobial Agents, 35, 322–332.

    Article  PubMed  CAS  Google Scholar 

  107. Roberts, A. P., & Mullany, P. (2014). Oral biofilms: A reservoir of transferable, bacterial, antimicrobial resistance. Expert Review of Anti Infective Therapy, 8, 1441–1450.

    Article  Google Scholar 

  108. Besemer, K., Singer, G., Hödl, I., et al. (2009). Bacterial community composition of stream biofilms in spatially variable-flow environments. Applied and Environmental Microbiology, 75, 7189–7195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Asfahl, K. L., & Schuster, M. (2016). Social interactions in bacterial cell-cell signaling. FEMS Microbiology Reviews, 41(1), 92–107.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong-hua Cai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhou, J., Cai, Zh. (2018). Microbial Social Interactions in Biofilm. In: Pallaval Veera Bramhachari (eds) Implication of Quorum Sensing System in Biofilm Formation and Virulence. Springer, Singapore. https://doi.org/10.1007/978-981-13-2429-1_4

Download citation

Publish with us

Policies and ethics