Skip to main content

Quorum Sensing Systems and Persistence

  • Chapter
  • First Online:
  • 1169 Accesses

Abstract

In order to control the clonal population’s fitness to manage the expense of the resources by the community, it is not surprising that bacterial communities coordinate the formation of persister cells (bacterial subpopulations that survive stress conditions such as antibiotic or environmental threats). The development of these persister cells is linked to the activity of intercellular signaling molecules. Among them, we focus on acyl-homoserine lactone (AHL), the competence-stimulating peptide (CSP), indole (IND) and autoinducer-2 (AI-2), all involved in the quorum sensing systems activation in several pathogens. In this work, we will describe the action of these molecules related with quorum sensing systems in Gram positive Streptococcus mutans and Staphylococcus aureus and in Gram negative Pseudomonas aeruginosa, Escherichia coli, and Acinetobacter spp. bacteria.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Leung, V., & Lévesque, C. M. (2012). A stress-inducible quorum-sensing peptide mediates the formation of persister cells with noninherited multidrug tolerance. Journal of Bacteriology, 194, 2265–2274.

    Article  CAS  Google Scholar 

  2. Wood, T. K. (2016). Combatting bacterial persister cells. Biotechnology and Bioengineering, 113, 476–483.

    Article  CAS  Google Scholar 

  3. Hobby, G. L., Meyer, K., & Chaffee, E. (1942). Observations on the mechanism of action of penicillin. Experimental Biology and Medicine, 50, 281–285.

    Article  CAS  Google Scholar 

  4. Bigger, J. (1994). Treatment of staphylococcal infections with penicillin by intermittent sterilisation. The Lancet, 244, 497–500.

    Article  Google Scholar 

  5. Costerton, J. W., Stewart, P. S., & Greenberg, E. P. (1999). Bacterial biofilms: A common cause of persistent infections. Science, 284, 1318–1322.

    Article  CAS  Google Scholar 

  6. Harrison, J. J., Turner, R. J., & Ceri, H. (2005). Persister cells, the biofilm matrix and tolerance to metal cations in biofilm and planktonic Pseudomonas aeruginosa. Environmental Microbiology, 7, 981–994.

    Article  CAS  Google Scholar 

  7. Lewis, K. (2010). Persister cells. Annual Review of Microbiology, 64, 357–372.

    Article  CAS  Google Scholar 

  8. Cohen, N. R., Lobritz, M. A., & Collins, J. J. (2013). Microbial persistence and the road to drug resistance. Cell Host & Microbe, 13, 632–642.

    Article  CAS  Google Scholar 

  9. Maisonneuve, E., & Gerdes, K. (2014). Molecular mechanisms underlying bacterial persisters. Cell, 157, 539–548.

    Article  CAS  Google Scholar 

  10. Harms, A., Maisonneuve, E., Gerdes, K. (2016). Mechanisms of bacterial persistence during stress and antibiotic exposure. Science, 16(354), 6318.

    Google Scholar 

  11. Hong, S. H., Wang, X., O’Connor, H. F., Benedik, M. J., & Wood, T. K. (2012). Bacterial persistence increases as environmental fitness decreases. Microbial Biotechnology, 5(4), 509–522.

    Article  Google Scholar 

  12. Moyed, H. S., & Bertrand, K. P. (1983). hipA, a newly recognized gene of Escherichia coli K-12 that affects frequency of persistence after inhibition of murein synthesis. Journal of Bacteriology, 155, 768–775.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Kim, Y., & Wood, T. K. (2010). Toxins Hha and CspD and small RNA regulator Hfq are involved in persister cell formation through MqsR in Escherichia coli. Biochemical and Biophysical Research Communications, 391, 209–213.

    Article  CAS  Google Scholar 

  14. Luidalepp, H., Jõers, A., Kaldalu, N., & Tenson, T. (2011). Age of inoculum strongly influences persister frequency and can mask effects of mutations implicated in altered persistence. Journal of Bacteriology, 193, 3598–3605.

    Article  CAS  Google Scholar 

  15. Dörr, T., Vulić, M., & Lewis, K. (2010). Ciprofloxacin causes persister formation by inducing the TisB toxin in Escherichia coli. PLoS Biology, 8, e1000317.

    Article  Google Scholar 

  16. Harrison, J. J., Wade, W. D., Akierman, S., Vacchi-Suzzi, C., Stremick, C. A., Turner, R. J., & Ceri, H. (2009). The chromosomal toxin gene yafQ is a determinant of multidrug tolerance for Escherichia coli growing in a biofilm. Antimicrobial Agents and Chemotherapy, 53, 2253–2258.

    Article  CAS  Google Scholar 

  17. Page, R., & Peti, W. (2016). Toxin-antitoxin systems in bacterial growth arrest and persistence. Nature Chemical Biology, 12, 208–214.

    Article  CAS  Google Scholar 

  18. Kim, J.-S., & Wood, T. K. (2016). Persistent persister misperceptions. Frontiers in Microbiology, 7, 2134.

    PubMed  PubMed Central  Google Scholar 

  19. Harms, A., Fino, C., Sørensen, M. A., Semsey, S., & Gerdes, K. (2017). Prophages and growth dynamics confound experimental results with antibiotic-tolerant persister cells. MBio, 8, e01964–e01917.

    Article  CAS  Google Scholar 

  20. Fauvart, M., De Groote, V. N., & Michiels, J. (2011). Role of persister cells in chronic infections: Clinical relevance and perspectives on anti-persister therapies. Journal of Medical Microbiology, 60, 699–709.

    Article  Google Scholar 

  21. Chowdhury, N., Kwan, B. W., Wood, T. K. (2016). Persistence increases in the absence of the alarmone guanosine tetraphosphate by reducing cell growth. Scientific Reports 6, 20519.

    Google Scholar 

  22. Taga, M. E., & Bassler, B. L. (2003). Chemical communication among bacteria. Proceedings of the National Academy of Sciences of the United States of America, 100(Suppl 2), 14549–14554.

    Article  CAS  Google Scholar 

  23. Lee, J., Bansal, T., Jayaraman, A., Bentley, W. E., & Wood, T. K. (2007). Enterohemorrhagic Escherichia coli biofilms are inhibited by 7-hydroxyindole and stimulated by isatin. Applied and Environmental Microbiology, 73, 4100–4109.

    Article  CAS  Google Scholar 

  24. Fuqua, W. C., Winans, S. C., & Greenberg, E. P. (1994). Quorum sensing in bacteria: The LuxR-LuxI family of cell density-responsive transcriptional regulators. Journal of Bacteriology, 176, 269–275.

    Article  CAS  Google Scholar 

  25. Salmond, G. P. C., Bycroft, B. W., Stewart, G. S. A. B., & Williams, P. (1995). The bacterial ‘enigma’: Cracking the code of cell-cell communication. Molecular Microbiology, 16, 615–624.

    Article  CAS  Google Scholar 

  26. Li, Y.-H., Tang, N., Aspiras, M. B., Lau, P. C. Y., Lee, J. H., Ellen, R. P., & Cvitkovitch, D. G. (2002). A quorum-sensing signaling system essential for genetic competence in Streptococcus mutans is involved in biofilm formation. Journal of Bacteriology, 184, 2699–2708.

    Article  CAS  Google Scholar 

  27. Perry, J. A., Jones, M. B., Peterson, S. N., Cvitkovitch, D. G., & Lévesque, C. M. (2009). Peptide alarmone signalling triggers an auto-active bacteriocin necessary for genetic competence. Molecular Microbiology, 72, 905–917.

    Article  CAS  Google Scholar 

  28. Dufour, D., Cordova, M., Cvitkovitch, D. G., & Lévesque, C. M. (2011). Regulation of the competence pathway as a novel role associated with a streptococcal bacteriocin. Journal of Bacteriology, 193, 6552–6559.

    Article  CAS  Google Scholar 

  29. Leung, V., Ajdic, D., Koyanagi, S., & Lévesque, C. M. (2015). The formation of Streptococcus mutans persisters induced by the quorum-sensing peptide pheromone is affected by the LexA regulator. Journal of Bacteriology, 197, 1083–1094.

    Article  CAS  Google Scholar 

  30. Leung, V., Dufour, D., & Lévesque, C. M. (2015). Death and survival in Streptococcus mutans: Differing outcomes of a quorum-sensing signaling peptide. Frontiers in Microbiology, 6, 1176.

    Article  Google Scholar 

  31. Lee, J., Zhang, X.-S., Hegde, M., Bentley, W. E., Jayaraman, A., & Wood, T. K. (2008). Indole cell signaling occurs primarily at low temperatures in Escherichia coli. The ISME Journal, 2, 1007–1023.

    Article  CAS  Google Scholar 

  32. Shimada, Y., Kinoshita, M., Harada, K., Mizutani, M., Masahata, K., Kayama, H., & Takeda, K. (2013). Commensal bacteria-dependent indole production enhances epithelial barrier function in the colon. PLoS One, 8, e80604.

    Article  Google Scholar 

  33. Bansal, T., Alaniz, R. C., Wood, T. K., & Jayaraman, A. (2010). The bacterial signal indole promotes epithelial cell barrier properties and attenuates inflammation. PNAS, 107, 228–233.

    Article  CAS  Google Scholar 

  34. Lee, J., Jayaraman, A., & Wood, T. K. (2007). Indole is an inter-species biofilm signal mediated by SdiA. BMC Microbiology, 7, 42.

    Article  Google Scholar 

  35. Lee, J., Attila, C., Cirillo, S. L., Cirillo, J. D., & Wood, T. K. (2009). Indole and 7-hydoxyindole diminish Pseudomonas aeruginosa virulence. Microbial Biotechnology, 2, 75–90.

    Article  CAS  Google Scholar 

  36. Lee, J. H., Wood, T. K., & Lee, J. (2015). Roles of indole as an interspecies and interkingdom signaling molecule. Trends in Microbiology, 23, 707–718.

    Article  CAS  Google Scholar 

  37. Vega, N. M., Allison, K. R., Khalil, A. S., & Collins, J. J. (2012). Signaling-mediated bacterial persister formation. Nature Chemical Biology, 8, 431–433.

    Article  CAS  Google Scholar 

  38. Hirakawa, H., Inazumi, Y., Masaki, T., Hirata, T., & Yamaguchi, A. (2005). Indole induces the expression of multidrug exporter genes in Escherichia coli. Molecular Microbiology, 55, 1113–1126.

    Article  CAS  Google Scholar 

  39. Li, X., Yang, Q., Dierckens, K., Milton, D. L., & Defoirdt, T. (2014). RpoS and indole signaling control the virulence of Vibrio anguillarum towards gnotobiotic sea bass (Dicentrarchus labrax) larvae. PLoS One, 9, e111801.

    Article  Google Scholar 

  40. Chu, W., Zere, T. R., Weber, M. M., Wood, T. K., Whiteley, M., Hidalgo-Romano, B., Valenzuela, E., & McLean, R. J. (2012). Indole production promotes Escherichia coli mixed-culture growth with Pseudomonas aeruginosa by inhibiting quorum signaling. Applied and Environmental Microbiology, 78, 411–419.

    Article  CAS  Google Scholar 

  41. Vega, N. M., Allison, K. R., Samuels, A. N., Klempner, M. S., & Collins, J. J. (2013). Salmonella typhimurium intercepts Escherichia coli signaling to enhance antibiotic tolerance. Proceedings of the National Academy of Sciences of the United States of America, 110, 14420–14425.

    Article  CAS  Google Scholar 

  42. Kim, J., & Park, W. (2013). Indole inhibits bacterial quorum sensing signal transmission by interfering with quorum sensing regulator folding. Microbiology, 159, 2616–2625.

    Article  CAS  Google Scholar 

  43. Kim, J., & Park, W. (2015). Indole: A signaling molecule or a mere metabolic byproduct that alters bacterial physiology at a high concentration? Journal of Microbiology, 53, 421–428.

    Article  CAS  Google Scholar 

  44. Wang, Y., Li, H., Cui, X., & Zhang, X. H. (2017). A novel stress response mechanism, triggered by indole, involved in quorum quenching enzyme MomL and iron-sulfur cluster in Muricauda olearia Th120. Scientific Reports, 7, 4252.

    Article  Google Scholar 

  45. Chen, X., Schauder, S., Potier, N., Av, D., Pelczer, I., Bassler, B. L., & Hughson, F. M. (2002). Structural identification of a bacterial quorum-sensing signal containing boron. Nature, 415, 545–549.

    Article  CAS  Google Scholar 

  46. Camilli, A., & Bassler, B. L. (2006). Bacterial small-molecule signaling pathways. Science, 311, 1113–1116.

    Article  CAS  Google Scholar 

  47. Waters, C. M., & Bassler, B. L. (2005). Quorum sensing: Cell-to-cell communication in bacteria. Annual Review of Cell and Developmental Biology, 21, 319–346.

    Article  CAS  Google Scholar 

  48. Schauder, S., Shokat, K., Surette, M. G., & Bassler, B. L. (2001). The LuxS-family of bacterial autoinducers: Biosynthesis of a novel quorum-sensing signal molecule. Molecular Microbiology, 41, 463–476.

    Article  CAS  Google Scholar 

  49. Herzberg, M., Kaye, I. K., Peti, W., & Wood, T. K. (2006). YdgG (TqsA) controls biofilm formation in Escherichia coli K-12 by enhancing autoinducer 2 transport. Journal of Bacteriology, 188, 587–598.

    Article  CAS  Google Scholar 

  50. González Barrios, A. F., Zuo, R., Hashimoto, Y., Yang, L., Bentley, W. E., & Wood, T. K. (2006). Autoinducer 2 controls biofilm formation in Escherichia coli through a novel motility quorum-sensing regulator (MqsR, B3022). Journal of Bacteriology, 188, 305–316.

    Article  Google Scholar 

  51. Kwan, B. W., Osbourne, D. O., Hu, Y., Benedik, M. J., & Wood, T. K. (2015). Phosphodiesterase DosP increases persistence by reducing cAMP which reduces the signal indole. Biotechnology and Bioengineering, 112, 588–600.

    Article  CAS  Google Scholar 

  52. Hu, Y., Kwan, B. W., Osbourne, D. O., Benedik, M. J., & Wood, T. K. (2015). Toxin YafQ increases persister cell formation by reducing indole signalling. Environmental Microbiology, 17, 1275–1285.

    Article  CAS  Google Scholar 

  53. Lee, J. H., Kim, Y. G., Gwon, G., Wood, T. K., & Lee, J. (2016). Halogenated indoles eradicate bacterial persister cells and biofilms. AMB Express, 6, 123.

    Article  Google Scholar 

  54. Ren, D., Sims, J. J., & Wood, T. K. (2001). Inhibition of biofilm formation and swarming of Escherichia coli by (5Z)-4-bromo-5-(bromomethylene)-3-butyl-2-(5H)-furanone. Environmental Microbiology, 3, 731–736.

    Article  CAS  Google Scholar 

  55. Pan, J., Bahar, A. A., Syed, H., & Ren, D. (2012). Reverting antibiotic tolerance of Pseudomonas aeruginosa PAO1 persister cells by (Z)-4-bromo-5-(bromomethylene)-3-methylfuran-2(5H)-one. PLoS One, 7, e45778.

    Article  CAS  Google Scholar 

  56. Pan, J., Song, F., & Ren, D. (2013). Controlling persister cells of Pseudomonas aeruginosa PDO300 by (Z)-4-bromo-5-(bromomethylene)-3-methylfuran-2(5H)-one. Bioorganic & Medicinal Chemistry Letters, 23, 4648–4651.

    Article  CAS  Google Scholar 

  57. Pan, J., Xie, X., Tian, W., Bahar, A. A., Lin, N., Song, F., An, J., & Ren, D. (2013). (Z)-4-bromo-5-(bromomethylene)-3-methylfuran-2(5H)-one sensitizes Escherichia coli persister cells to antibiotics. Applied Microbiology and Biotechnology, 97, 9145–9154.

    Article  CAS  Google Scholar 

  58. Möker, N., Dean, C. R., & Tao, J. (2010). Pseudomonas aeruginosa increases formation of multidrug-tolerant persister cells in response to quorum-sensing signaling molecules. Journal of Bacteriology, 192, 1946–1955.

    Article  Google Scholar 

  59. Allegretta, G., Maurer, C. K., Eberhard, J., Maura, D., Hartmann, R. W., Rahme, L., & Empting, M. (2017). In-depth profiling of MvfR-regulated small molecules in Pseudomonas aeruginosa after quorum sensing inhibitor treatment. Frontiers in Microbiology, 8, 924.

    Article  Google Scholar 

  60. Que, Y. A., Hazan, R., Strobel, B., Maura, D., He, J., Kesarwani, M., Panopoulos, P., Tsurumi, A., Giddey, M., Wilhelmy, J., Mindrinos, M. N., & Rahme, L. G. (2013). A quorum sensing small volatile molecule promotes antibiotic tolerance in bacteria. PLoS One, 8, e80140.

    Article  Google Scholar 

  61. Cheng, H.-Y., Soo, V. W. C., Islam, S., McAnulty, M. J., Benedik, M. J., & Wood, T. K. (2014). Toxin GhoT of the GhoT/GhoS toxin/antitoxin system damages the cell membrane to reduce adenosine triphosphate and to reduce growth under stress. Environmental Microbiology, 16, 1741–1754.

    Article  CAS  Google Scholar 

  62. Conlon, B. P., Rowe, S. E., Gandt, A. B., Nuxoll, A. S., Donegan, N. P., Zalis, E. A., Clair, G., Adkins, J. N., Cheung, A. L., & Lewis, K. (2016). Persister formation in Staphylococcus aureus is associated with ATP depletion. Nature Microbiology, 1, 16051.

    Article  CAS  Google Scholar 

  63. Shan, Y., Brown Gandt, A., Rowe, S. E., Deisinger, J. P., Conlon, B. P., & Lewis, K. (2017). ATP-dependent persister formation in Escherichia coli. MBio, 8, e02267–e02216.

    Article  CAS  Google Scholar 

  64. Xu, T., Wang, X.-Y., Cui, P., Zhang, Y.-M., Zhang, W.-H., & Zhang, Y. (2017). The Agr quorum sensing system represses persister formation through regulation of phenol soluble modulins in Staphylococcus aureus. Frontiers in Microbiology, 8, 2189.

    Article  Google Scholar 

Download references

Acknowledgements

We thank the financing by grants PI13/02390 and PI16/01163 awarded to M. Tomás within the State Plan for R+D+I 2013–2016 (National Plan for Scientific Research, Technological Development and Innovation 2008–2011) and co-financed by the ISCIII-Deputy General Directorate of evaluation and Promotion of Research-European Regional Development Fund “A way of Making Europe” and Instituto de Salud Carlos III FEDER. M.Tomás was financially supported by the Miguel Servet Research Programme (SERGAS and ISCIII). L. Fernández-García was financially supported by a predoctoral fellowship from the Xunta de Galicia (GAIN, Axencia de Innovación). Finally, we would to thank to Spanish Network for Research in Infectious Diseases (REIPI), Spain (RD12/0015/0010, RD16/0016/0001 and RD16/0016/0006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Tomás .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fernandez-García, L., Blasco, L., Trastoy, R., García-Contreras, R., Wood, T.K., Tomás, M. (2018). Quorum Sensing Systems and Persistence. In: Pallaval Veera Bramhachari (eds) Implication of Quorum Sensing System in Biofilm Formation and Virulence. Springer, Singapore. https://doi.org/10.1007/978-981-13-2429-1_3

Download citation

Publish with us

Policies and ethics