Skip to main content

Quorum Sensing Mechanisms in Gram Positive Bacteria

  • Chapter
  • First Online:
Book cover Implication of Quorum Sensing System in Biofilm Formation and Virulence

Abstract

Quorum sensing (QS) is a form of intercellular communication that enables bacteria to coordinate gene expression in a density-dependent fashion. Bacterial signaling molecules called autoinducers are central to this process. When released into the surrounding environment they bind to signaling receptors on the surface of neighboring bacteria, and upon reaching a threshold level activate quorum sensing genes. Gram-positive bacteria employ small post-translationally modified peptides called autoinducing peptides (AIPs) as signaling molecules. AIPs are often integral elements of a histidine kinase two-component signal transduction system. In certain cases the secreted AIPs may be imported back into the cell after release. They are then identified by cytoplasmic transcription factors. In this system, extracellular proteases process the secreted precursor-AIP into mature AIP. Upon return to the cell, the mature AIPs bind to, and alter the activity of the corresponding transcription factors. Some examples of such transport are know to be critical in sporulation, competence, and enzyme production in Bacillus subtilis. A large gamut of peptides is secreted from bacteria by de novo biosynthesis and proteolytic degradation. These peptides include pheromones that modulate expression of specific genes of Gram positive bacteria to regulate biosynthesis of quorum dependent proteins such as virulence factors in addition to serving critical roles in a myriad of bacterial life processes such as regulation of the bacterial competence, bacterial conjugation and bacterial virulence. Interestingly, bacterial cells can respond to the AIPs secreted by itself as well. The physiological effects of this ‘self-sensing’ have been studied rather recently in Bacillus subtilis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Atkinson, S., & Williams, P. (2009). Quorum sensing and social networking in the microbial world. Journal of the Royal Society Interface, 6(40), 959–978. https://doi.org/10.1098/rsif.2009.0203.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Baker, M. D., & Neiditch, M. B. (2011). Structural basis of response regulator inhibition by a bacterial anti-activator protein. PLoS Biology, 9(12), e1001226. https://doi.org/10.1371/journal.pbio.1001226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Balamurugan, P., Praveen Krishna, V., Bharath, D., Lavanya, R., Vairaprakash, P., & Adline Princy, S. (2017). Staphylococcus aureus quorum regulator SarA targeted compound, 2-[(Methylamino)methyl]phenol inhibits biofilm and down-regulates virulence genes. Frontiers in Microbiology, 8, 1231–1210. https://doi.org/10.3389/fmicb.2017.01290.

    Article  Google Scholar 

  4. Bareia, T., Pollak, S., & Eldar, A. (2018). Self-sensing in Bacillus subtilis quorum-sensing systems. Nature Microbiology, 3(1), 83–89. https://doi.org/10.1038/s41564-017-0044-z.

    Article  CAS  PubMed  Google Scholar 

  5. Bassler, B. L., Greenberg, E. P., & Stevens, A. M. (1997). Cross-species induction of luminescence in the quorum-sensing bacterium Vibrio harveyi. Journal of Bacteriology, 179(12), 4043–4045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bassler, B. L., Wright, M., & Silverman, M. R. (1994). Multiple signalling systems controlling expression of luminescence in Vibrio harveyi: Sequence and function of genes encoding a second sensory pathway. Molecular Microbiology, 13(2), 273–286. https://doi.org/10.1111/j.1365-2958.1994.tb00422.x.

    Article  CAS  PubMed  Google Scholar 

  7. Bischofs, I. B., Hug, J. A., Liu, A. W., Wolf, D. M., & Arkin, A. P. (2009). Complexity in bacterial cell-cell communication: Quorum signal integration and subpopulation signaling in the Bacillus subtilis phosphorelay. Proceedings of the National Academy of Sciences of the United States of America, 106(16), 6459–6464. https://doi.org/10.1073/pnas.0810878106.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Biswa, P., & Doble, M. (2013). Production of acylated homoserine lactone by gram-positive bacteria isolated from marine water. FEMS Microbiology Letters, 343(1), 34–41. https://doi.org/10.1111/1574-6968.12123.

    Article  CAS  PubMed  Google Scholar 

  9. Bouillaut, L., Perchat, S., Arold, S., Zorrilla, S., Slamti, L., Henry, C., et al. (2008). Molecular basis for group-specific activation of the virulence regulator PlcR by PapR heptapeptides. Nucleic Acids Research, 36(11), 3791–3801. https://doi.org/10.1093/nar/gkn149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Brunel, A.-S., & Guery, B. (2017). Multidrug resistant (or antimicrobial-resistant) pathogens – Alternatives to new antibiotics? Swiss Medical Weekly, 147(4748), w14553. https://doi.org/10.4414/smw.2017.14553.

    Article  PubMed  Google Scholar 

  11. Chang, J. C., LaSarre, B., Jimenez, J. C., Aggarwal, C., & Federle, M. J. (2011). Two group a streptococcal peptide pheromones act through opposing Rgg regulators to control biofilm development. PLoS Pathogens, 7(8), e1002190. https://doi.org/10.1371/journal.ppat.1002190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chu, Y.-Y., Nega, M., Wölfle, M., Plener, L., Grond, S., Jung, K., & Götz, F. (2013). A new class of quorum quenching molecules from Staphylococcus species affects communication and growth of gram-negative bacteria. PLoS Pathogens, 9(9), e1003654–e1003613. https://doi.org/10.1371/journal.ppat.1003654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cook, L. C., & Federle, M. J. (2014). Peptide pheromone signaling in Streptococcus and Enterococcus. FEMS Microbiology Reviews, 38(3), 473–492. https://doi.org/10.1111/1574-6976.12046.

    Article  CAS  PubMed  Google Scholar 

  14. Czajkowski, R., & Jafra, S. (2009). Quenching of acyl-homoserine lactone-dependent quorum sensing by enzymatic disruption of signal molecules. Acta Biochimica Polonica, 56(1), 1–16.

    CAS  PubMed  Google Scholar 

  15. D’Andrea, L. D., & Regan, L. (2003). TPR proteins: The versatile helix. Trends in Biochemical Sciences, 28(12), 655–662. https://doi.org/10.1016/j.tibs.2003.10.007.

    Article  CAS  PubMed  Google Scholar 

  16. Declerck, N., Bouillaut, L., Chaix, D., Rugani, N., Slamti, L., Hoh, F., et al. (2007). Structure of PlcR: Insights into virulence regulation and evolution of quorum sensing in Gram-positive bacteria. Proceedings of the National Academy of Sciences of the United States of America, 104(47), 18490–18495. https://doi.org/10.1073/pnas.0704501104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Diaz, A. R., Core, L. J., Jiang, M., Morelli, M., Chiang, C. H., Szurmant, H., & Perego, M. (2012). Bacillus subtilis RapA phosphatase domain interaction with its substrate, phosphorylated Spo0F, and its inhibitor, the PhrA peptide. Journal of Bacteriology, 194(6), 1378–1388. https://doi.org/10.1128/JB.06747-11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dogsa, I., Choudhary, K. S., Marsetic, Z., Hudaiberdiev, S., Vera, R., Pongor, S., & Mandic-Mulec, I. (2014). ComQXPA quorum sensing systems may not be unique to Bacillus subtilis: A census in prokaryotic genomes. PLoS One, 9(5), e96122–e96128. https://doi.org/10.1371/journal.pone.0096122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fleuchot, B., Gitton, C., Guillot, A., Vidic, J., Nicolas, P., Besset, C., et al. (2011). Rgg proteins associated with internalized small hydrophobic peptides: A new quorum-sensing mechanism in streptococci. Molecular Microbiology, 80(4), 1102–1119. https://doi.org/10.1111/j.1365-2958.2011.07633.x.

    Article  CAS  PubMed  Google Scholar 

  20. Fontaine, L., Boutry, C., de Frahan, M. H., Delplace, B., Fremaux, C., Horvath, P., et al. (2010). A novel pheromone quorum-sensing system controls the development of natural competence in Streptococcus thermophilus and Streptococcus salivarius. Journal of Bacteriology, 192(5), 1444–1454. https://doi.org/10.1128/JB.01251-09.

    Article  CAS  PubMed  Google Scholar 

  21. Frenzel, E., Doll, V., Pauthner, M., Lücking, G., Scherer, S., & Ehling-Schulz, M. (2012). CodY orchestrates the expression of virulence determinants in emetic Bacillus cereus by impacting key regulatory circuits. Molecular Microbiology, 85(1), 67–88. https://doi.org/10.1111/j.1365-2958.2012.08090.x.

    Article  CAS  PubMed  Google Scholar 

  22. Gallego del Sol, F., & Marina, A. (2013). Structural basis of Rap phosphatase inhibition by Phr peptides. PLoS Biology, 11(3), e1001511. https://doi.org/10.1371/journal.pbio.1001511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gardan, R., Besset, C., Guillot, A., Gitton, C., & Monnet, V. (2009). The oligopeptide transport system is essential for the development of natural competence in Streptococcus thermophilus strain LMD-9. Journal of Bacteriology, 191(14), 4647–4655. https://doi.org/10.1128/JB.00257-09.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Globisch, D., Lowery, C. A., McCague, K. C., & Janda, K. D. (2012). Uncharacterized 4,5-dihydroxy-2,3-pentanedione (DPD) molecules revealed through NMR spectroscopy: Implications for a greater signaling diversity in bacterial species. Angewandte Chemie (International Ed. in English), 51(17), 4204–4208. https://doi.org/10.1002/anie.201109149.

    Article  CAS  Google Scholar 

  25. Gohar, M., Faegri, K., Perchat, S., Ravnum, S., Økstad, O. A., Gominet, M., et al. (2008). The PlcR virulence regulon of Bacillus cereus. PLoS ONE, 3(7), e2793. https://doi.org/10.1371/journal.pone.0002793.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gominet, M., Slamti, L., Gilois, N., Rose, M., & Lereclus, D. (2001). Oligopeptide permease is required for expression of the Bacillus thuringiensis plcR regulon and for virulence. Molecular Microbiology, 40(4), 963–975.

    Article  CAS  PubMed  Google Scholar 

  27. González Barrios, A. F., Zuo, R., Hashimoto, Y., Yang, L., Bentley, W. E., & Wood, T. K. (2006). Autoinducer 2 controls biofilm formation in Escherichia coli through a novel motility quorum-sensing regulator (MqsR, B3022). Journal of Bacteriology, 188(1), 305–316. https://doi.org/10.1128/JB.188.1.305-316.2006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gray, B., Hall, P., & Gresham, H. (2013). Targeting agr- and agr-like quorum sensing systems for development of common therapeutics to treat multiple gram-positive bacterial infections. Sensors, 13(12), 5130–5166. https://doi.org/10.3390/s130405130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Grenha, R., Slamti, L., Nicaise, M., Refes, Y., Lereclus, D., & Nessler, S. (2013). Structural basis for the activation mechanism of the PlcR virulence regulator by the quorum-sensing signal peptide PapR. Proceedings of the National Academy of Sciences of the United States of America, 110(3), 1047–1052. https://doi.org/10.1073/pnas.1213770110.

    Article  PubMed  Google Scholar 

  30. Ha, J.-H., Eo, Y., Grishaev, A., Guo, M., Smith, J. A. I., Sintim, H. O., et al. (2013). Crystal structures of the LsrR proteins complexed with phospho-AI-2 and two signal-interrupting analogues reveal distinct mechanisms for ligand recognition. Journal of the American Chemical Society, 135(41), 15526–15535. https://doi.org/10.1021/ja407068v.

    Article  CAS  PubMed  Google Scholar 

  31. Han, Y., Chen, F., Li, N., Zhu, B., & Li, X. (2010). Bacillus marcorestinctum sp. nov., a novel soil acylhomoserine lactone quorum-sensing signal quenching bacterium. International Journal of Molecular Sciences, 11(2), 507–520. https://doi.org/10.3390/ijms11020507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Håvarstein, L. S., Coomaraswamy, G., & Morrison, D. A. (1995). An unmodified heptadecapeptide pheromone induces competence for genetic transformation in Streptococcus pneumoniae. Proceedings of the National Academy of Sciences of the United States of America, 92(24), 11140–11144.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Hoover, S. E., Perez, A. J., Tsui, H.-C. T., Sinha, D., Smiley, D. L., DiMarchi, R. D., et al. (2015). A new quorum-sensing system (TprA/PhrA) for Streptococcus pneumoniae D39 that regulates a lantibiotic biosynthesis gene cluster. Molecular Microbiology, 97(2), 229–243. https://doi.org/10.1111/mmi.13029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jones, M. B., Peterson, S. N., Benn, R., Braisted, J. C., Jarrahi, B., Shatzkes, K., et al. (2014). Role of luxSin Bacillus anthracis growth and virulence factor expression. Virulence, 1(2), 72–83. https://doi.org/10.4161/viru.1.2.10752.

    Article  Google Scholar 

  35. Kaur, G., Rajesh, S., & Princy, S. A. (2015). Plausible drug targets in the Streptococcus mutans quorum sensing pathways to combat dental biofilms and associated risks. Indian Journal of Microbiology, 55(4), 349–356. https://doi.org/10.1007/s12088-015-0534-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Koetje, E. J. (2003). A plasmid-borne Rap-Phr system of Bacillus subtilis can mediate cell-density controlled production of extracellular proteases. Microbiology, 149(1), 19–28. https://doi.org/10.1099/mic.0.25737-0.

    Article  CAS  PubMed  Google Scholar 

  37. Koetje, E. J., Hajdo-Milasinovic, A., Kiewiet, R., Bron, S., & Tjalsma, H. (2003). A plasmid-borne Rap-Phr system of Bacillus subtilis can mediate cell-density controlled production of extracellular proteases. Microbiology (Reading, England), 149(Pt 1), 19–28. https://doi.org/10.1099/mic.0.25737-0.

    Article  CAS  Google Scholar 

  38. Kozlowicz, B. K., Shi, K., Gu, Z.-Y., Ohlendorf, D. H., Earhart, C. A., & Dunny, G. M. (2006). Molecular basis for control of conjugation by bacterial pheromone and inhibitor peptides. Molecular Microbiology, 62(4), 958–969. https://doi.org/10.1111/j.1365-2958.2006.05434.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kuipers, O. P., Beerthuyzen, M. M., de Ruyter, P. G., Luesink, E. J., & de Vos, W. M. (1995). Autoregulation of nisin biosynthesis in Lactococcus lactis by signal transduction. Journal of Biological Chemistry, 270(45), 27299–27304.

    Article  CAS  PubMed  Google Scholar 

  40. Kumar, S., Kolodkin-Gal, I., & Engelberg-Kulka, H. (2013). Novel quorum-sensing peptides mediating interspecies bacterial cell death. mBio, 4(3), e00314–e00313. https://doi.org/10.1128/mBio.00314-13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. LaSarre, B., Aggarwal, C., & Federle, M. J. (2012). Antagonistic Rgg regulators mediate quorum sensing via competitive DNA binding in Streptococcus pyogenes. mBio, 3(6), e00333–e00312. https://doi.org/10.1128/mBio.00333-12.

    Article  CAS  PubMed Central  Google Scholar 

  42. LaSarre, B., Chang, J. C., & Federle, M. J. (2013). Redundant group A streptococcus signaling peptides exhibit unique activation potentials. Journal of Bacteriology, 195(18), 4310–4318. https://doi.org/10.1128/JB.00684-13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lazazzera, B. A., Solomon, J. M., & Grossman, A. D. (1997). An exported peptide functions intracellularly to contribute to cell density signaling in B-subtilis. Cell, 89(6), 917–925. https://doi.org/10.1016/S0092-8674(00)80277-9.

    Article  CAS  PubMed  Google Scholar 

  44. Lowery, C. A., Park, J., Gloeckner, C., Meijler, M. M., Mueller, R. S., Boshoff, H. I., et al. (2009). Defining the mode of action of tetramic acid antibacterials derived from Pseudomonas aeruginosa quorum sensing signals. Journal of the American Chemical Society, 131(40), 14473–14479. https://doi.org/10.1021/ja9056079.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lucking, G., Dommel, M. K., Scherer, S., Fouet, A., & Ehling-Schulz, M. (2009). Cereulide synthesis in emetic Bacillus cereus is controlled by the transition state regulator AbrB, but not by the virulence regulator PlcR. Microbiology (Reading, England), 155(3), 922–931. https://doi.org/10.1099/mic.0.024125-0.

    Article  CAS  Google Scholar 

  46. Manifold-Wheeler, B. C., Elmore, B. O., Triplett, K. D., Castleman, M. J., Otto, M., & Hall, P. R. (2016). Serum lipoproteins are critical for pulmonary innate defense against Staphylococcus aureus quorum sensing. Journal of Immunology (Baltimore, Md.: 1950), 196(1), 328–335. https://doi.org/10.4049/jimmunol.1501835.

    Article  CAS  Google Scholar 

  47. Martins, M., McCusker, M. P., Viveiros, M., Couto, I., Fanning, S., Pagès, J.-M., & Amaral, L. (2013). A simple method for assessment of MDR bacteria for over-expressed efflux pumps. The Open Microbiology Journal, 7(1), 72–82. https://doi.org/10.2174/1874285801307010072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. McClean, K. H., Winson, M. K., Fish, L., Taylor, A., Chhabra, S. R., Camara, M., et al. (1997). Quorum sensing and Chromobacterium violaceum: Exploitation of violacein production and inhibition for the detection of N-acylhomoserine lactones. Microbiology (Reading, England), 143(Pt 12), 3703–3711. https://doi.org/10.1099/00221287-143-12-3703.

    Article  CAS  Google Scholar 

  49. McQuade, R. S., Comella, N., & Grossman, A. D. (2001). Control of a family of phosphatase regulatory genes (phr) by the alternate sigma factor sigma-H of Bacillus subtilis. Journal of Bacteriology, 183(16), 4905–4909. https://doi.org/10.1128/JB.183.16.4905-4909.2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Miller, M. B., & Bassler, B. L. (2001). Quorum sensing in bacteria. Annual Review of Microbiology, 55(1), 165–199. https://doi.org/10.1146/annurev.micro.55.1.165.

    Article  CAS  PubMed  Google Scholar 

  51. Monnet, V., & Gardan, R. (2015). Quorum-sensing regulators in gram-positive bacteria: ‘Cherchez le peptide ’. Molecular Microbiology, 97(2), 181–184. https://doi.org/10.1111/mmi.13060.

    Article  CAS  PubMed  Google Scholar 

  52. Nakayama, J., Uemura, Y., Nishiguchi, K., Yoshimura, N., Igarashi, Y., & Sonomoto, K. (2009). Ambuic acid inhibits the biosynthesis of cyclic peptide quormones in gram-positive bacteria. Antimicrobial Agents and Chemotherapy, 53(2), 580–586. https://doi.org/10.1128/AAC.00995-08.

    Article  CAS  PubMed  Google Scholar 

  53. Nealson, K. H., Platt, T., & Hastings, J. W. (1970). Cellular control of the synthesis and activity of the bacterial luminescent system. Journal of Bacteriology, 104(1), 313–322.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Neiditch, M. B., Capodagli, G. C., Prehna, G., & Federle, M. J. (2017). Genetic and structural analyses of RRNPP intercellular peptide signaling of gram-positive bacteria. Annual Review of Genetics, 51(1), 311–333. https://doi.org/10.1146/annurev-genet-120116-023507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ohtani, K., Yuan, Y., Hassan, S., Wang, R., Wang, Y., & Shimizu, T. (2009). Virulence gene regulation by the agr system in Clostridium perfringens. Journal of Bacteriology, 191(12), 3919–3927. https://doi.org/10.1128/JB.01455-08.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Olivero-Verbel, J., Barreto-Maya, A., Bertel-Sevilla, A., & Stashenko, E. E. (2014). Composition, anti-quorum sensing and antimicrobial activity of essential oils from Lippia alba. Brazilian Journal of Microbiology: [Publication of the Brazilian Society for Microbiology], 45(3), 759–767.

    Article  CAS  Google Scholar 

  57. Parashar, V., Jeffrey, P. D., & Neiditch, M. B. (2013). Conformational change-induced repeat domain expansion regulates Rap phosphatase quorum-sensing signal receptors. PLoS Biology, 11(3), e1001512–e1001515. https://doi.org/10.1371/journal.pbio.1001512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Parashar, V., Mirouze, N., Dubnau, D. A., & Neiditch, M. B. (2011). Structural basis of response regulator dephosphorylation by Rap phosphatases. PLoS Biology, 9(2), e1000589. https://doi.org/10.1371/journal.pbio.1000589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Perchat, S., Dubois, T., Zouhir, S., Gominet, M., Poncet, S., Lemy, C., et al. (2011). A cell-cell communication system regulates protease production during sporulation in bacteria of the Bacillus cereus group. Molecular Microbiology, 82(3), 619–633. https://doi.org/10.1111/j.1365-2958.2011.07839.x.

    Article  CAS  PubMed  Google Scholar 

  60. Perego, M. (2013). Forty years in the making: Understanding the molecular mechanism of peptide regulation in bacterial development. PLoS Biology, 11(3), e1001516. https://doi.org/10.1371/journal.pbio.1001516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Perez-Pascual, D., Monnet, V., & Gardan, R. (2016). Bacterial cell–cell communication in the host via RRNPP peptide-binding regulators. Frontiers in Microbiology, 7(e1002190), 1043–1048. https://doi.org/10.3389/fmicb.2016.00706.

    Article  Google Scholar 

  62. Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera – A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084.

    Article  CAS  PubMed  Google Scholar 

  63. Pinkston, K. L., Gao, P., Diaz-Garcia, D., Sillanpää, J., Nallapareddy, S. R., Murray, B. E., & Harvey, B. R. (2011). The Fsr quorum-sensing system of Enterococcus faecalis modulates surface display of the collagen-binding MSCRAMM Ace through regulation of gelE. Journal of Bacteriology, 193(17), 4317–4325. https://doi.org/10.1128/JB.05026-11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Pottathil, M., & Lazazzera, B. A. (2003). The extracellular Phr peptide-Rap phosphatase signaling circuit of Bacillus subtilis. Frontiers in Bioscience: A Journal and Virtual Library, 8, d32–d45.

    Article  Google Scholar 

  65. Rella, A., Yang, M. W., Gruber, J., Montagna, M. T., Luberto, C., Zhang, Y.-M., & Del Poeta, M. (2011). Pseudomonas aeruginosa inhibits the growth of Cryptococcus species. Mycopathologia, 173(5–6), 451–461. https://doi.org/10.1007/s11046-011-9494-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Shi, K., Brown, C. K., Gu, Z.-Y., Kozlowicz, B. K., Dunny, G. M., Ohlendorf, D. H., & Earhart, C. A. (2005). Structure of peptide sex pheromone receptor PrgX and PrgX/pheromone complexes and regulation of conjugation in Enterococcus faecalis. Proceedings of the National Academy of Sciences of the United States of America, 102(51), 18596–18601. https://doi.org/10.1073/pnas.0506163102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Shukla, V., & Bhathena, Z. (2016a). Broad spectrum anti-quorum sensing activity of tannin-rich crude extracts of Indian medicinal plants. Scientifica, 2016(5), 5823013–5823018. https://doi.org/10.1155/2016/5823013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Shukla, V., & Bhathena, Z. (2016b). Research article broad spectrum anti-quorum sensing activity of tannin-rich crude extracts of Indian medicinal plants. Scientifica, 2016(5), 1–8. https://doi.org/10.1155/2016/5823013.

    Article  CAS  Google Scholar 

  69. Singh, A. K., Prakash, P., Singh, R., Nandy, N., Firdaus, Z., Bansal, M., et al. (2017). Curcumin quantum dots mediated degradation of bacterial biofilms. Frontiers in Microbiology, 8, 48–17. https://doi.org/10.3389/fmicb.2017.01517.

    Article  Google Scholar 

  70. Slamti, L., Lemy, C., Henry, C., Guillot, A., Huillet, E., & Lereclus, D. (2016). CodY regulates the activity of the virulence quorum sensor PlcR by controlling the import of the signaling peptide PapR in Bacillus thuringiensis. Frontiers in Microbiology, 6(e1002629), 1043–1014. https://doi.org/10.3389/fmicb.2015.01501.

    Article  Google Scholar 

  71. Slamti, L., Perchat, S., Huillet, E., & Lereclus, D. (2014). Quorum sensing in Bacillus thuringiensis is required for completion of a full infectious cycle in the insect. Toxins, 6(12), 2239–2255. https://doi.org/10.3390/toxins6082239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Smits, W. K., Bongiorni, C., Veening, J.-W., Hamoen, L. W., Kuipers, O. P., & Perego, M. (2007). Temporal separation of distinct differentiation pathways by a dual specificity Rap-Phr system in Bacillus subtilis. Molecular Microbiology, 65(1), 103–120. https://doi.org/10.1111/j.1365-2958.2007.05776.x.

    Article  CAS  PubMed  Google Scholar 

  73. Stephenson, S., Mueller, C., Jiang, M., & Perego, M. (2003). Molecular analysis of Phr peptide processing in Bacillus subtilis. Journal of Bacteriology, 185(16), 4861–4871. https://doi.org/10.1128/JB.185.16.4861-4871.2003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Sturme, M. H. J., Kleerebezem, M., Nakayama, J., Akkermans, A. D. L., Vaugha, E. E., & de Vos, W. M. (2002). Cell to cell communication by autoinducing peptides in gram-positive bacteria. Antonie Van Leeuwenhoek, 81(1–4), 233–243.

    Article  CAS  PubMed  Google Scholar 

  75. Taga, M. E., Miller, S. T., & Bassler, B. L. (2003). Lsr-mediated transport and processing of AI-2 in Salmonella typhimurium. Molecular Microbiology, 50(4), 1411–1427. https://doi.org/10.1046/j.1365-2958.2003.03781.x.

    Article  CAS  PubMed  Google Scholar 

  76. Tashiro, Y., Ichikawa, S., Nakajima-Kambe, T., Uchiyama, H., & Nomura, N. (2010). Pseudomonas quinolone signal affects membrane vesicle production in not only gram-negative but also gram-positive bacteria. Microbes and Environments, 25(2), 120–125. https://doi.org/10.1264/jsme2.ME09182.

    Article  PubMed  Google Scholar 

  77. Teasdale, M. E., Liu, J., Wallace, J., Akhlaghi, F., & Rowley, D. C. (2009). Secondary metabolites produced by the marine bacterium Halobacillus salinus that inhibit quorum sensing-controlled phenotypes in gram-negative bacteria. Applied and Environmental Microbiology, 75(3), 567–572. https://doi.org/10.1128/AEM.00632-08.

    Article  CAS  PubMed  Google Scholar 

  78. Trappetti, C., McAllister, L. J., Chen, A., Wang, H., Paton, A. W., Oggioni, M. R., … Paton, J. C. (2017). Autoinducer 2 signaling via the phosphotransferase FruA drives galactose utilization by Streptococcus pneumoniae, resulting in hypervirulence. mBio, 8(1), e02269–02216-02218. doi:https://doi.org/10.1128/mBio.02269-16.

  79. Tsuchikama, K., Zhu, J., Lowery, C. A., Kaufmann, G. F., & Janda, K. D. (2012). C4-Alkoxy-HPD: A potent class of synthetic modulators surpassing nature in AI-2 quorum sensing. Journal of the American Chemical Society, 134(33), 13562–13564. https://doi.org/10.1021/ja305532y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Vendeville, A., Winzer, K., Heurlier, K., Tang, C. M., & Hardie, K. R. (2005). Making ‘sense’ of metabolism: Autoinducer-2, LuxS and pathogenic bacteria. Nature Reviews. Microbiology, 3(5), 383–396. https://doi.org/10.1038/nrmicro1146.

    Article  CAS  PubMed  Google Scholar 

  81. Verbeke, F., De Craemer, S., Debunne, N., Janssens, Y., Wynendaele, E., Van de Wiele, C., & De Spiegeleer, B. (2017). Peptides as quorum sensing molecules: Measurement techniques and obtained levels in vitro and in vivo. Frontiers in Neuroscience, 11, 575–518. https://doi.org/10.3389/fnins.2017.00183.

    Article  Google Scholar 

  82. Wang, B., & Muir, T. W. (2016). Regulation of virulence in Staphylococcus aureus: Molecular mechanisms and remaining puzzles. Cell Chemical Biology, 23(2), 214–224. https://doi.org/10.1016/j.chembiol.2016.01.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Wang, Y., Yi, L., Wang, S., Fan, H., Ding, C., Mao, X., & Lu, C. (2015). Crystal structure and identification of two key amino acids involved in AI-2 production and biofilm formation in Streptococcus suis LuxS. PLoS One, 10(10), e0138826–e0138813. https://doi.org/10.1371/journal.pone.0138826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Wolf, D., Rippa, V., Mobarec, J. C., Sauer, P., Adlung, L., Kolb, P., & Bischofs, I. B. (2016). The quorum-sensing regulator ComA from Bacillus subtilis activates transcription using topologically distinct DNA motifs. Nucleic Acids Research, 44(5), 2160–2172. https://doi.org/10.1093/nar/gkv1242.

    Article  CAS  PubMed  Google Scholar 

  85. Xu, G.-M. (2016). Relationships between the regulatory systems of quorum sensing and multidrug resistance. Frontiers in Microbiology, 7(114), 829–826. https://doi.org/10.3389/fmicb.2016.00958.

    Article  Google Scholar 

  86. Xu, L., Li, H., Vuong, C., Vadyvaloo, V., Wang, J., Yao, Y., et al. (2006). Role of the luxS quorum-sensing system in biofilm formation and virulence of Staphylococcus epidermidis. Infection and Immunity, 74(1), 488–496. https://doi.org/10.1128/IAI.74.1.488-496.2006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Yin, J., Ding, X., Xia, L., Yu, Z., Lv, Y., Hu, S., et al. (2011). Transcription of gene in an acrystalliferous strain of Bacillus thuringiensis XBU001 positively regulated by the metalloprotease camelysin gene at the onset of stationary phase. FEMS Microbiology Letters, 318(1), 92–100. https://doi.org/10.1111/j.1574-6968.2011.02247.x.

    Article  CAS  PubMed  Google Scholar 

  88. Youk, H., & Lim, W. A. (2014). Secreting and sensing the same molecule allows cells to achieve versatile social behaviors. Science (New York, N.Y.), 343(6171), 1242782–1242782. https://doi.org/10.1126/science.1242782.

    Article  CAS  Google Scholar 

  89. Yu, D., Zhao, L., Xue, T., & Sun, B. (2012). Staphylococcus aureus autoinducer-2 quorum sensing decreases biofilm formation in an icaR-dependent manner. BMC Microbiology, 12(1), 288. https://doi.org/10.1186/1471-2180-12-288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Zhou, L., Slamti, L., Nielsen-LeRoux, C., Lereclus, D., & Raymond, B. (2014). The social biology of quorum sensing in a naturalistic host pathogen system. Current Biology, 24(20), 2417–2422. https://doi.org/10.1016/j.cub.2014.08.049.

    Article  CAS  PubMed  Google Scholar 

  91. Zouhir, S., Perchat, S., Nicaise, M., Perez, J., Guimaraes, B., Lereclus, D., & Nessler, S. (2013). Peptide-binding dependent conformational changes regulate the transcriptional activity of the quorum-sensor NprR. Nucleic Acids Research, 41(16), 7920–7933. https://doi.org/10.1093/nar/gkt546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veer S. Bhatt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhatt, V.S. (2018). Quorum Sensing Mechanisms in Gram Positive Bacteria. In: Pallaval Veera Bramhachari (eds) Implication of Quorum Sensing System in Biofilm Formation and Virulence. Springer, Singapore. https://doi.org/10.1007/978-981-13-2429-1_20

Download citation

Publish with us

Policies and ethics