Skip to main content

Emission Taxation and Investment in Cleaner Production: The Case of Differentiated Duopoly

  • Chapter
  • First Online:
Book cover Theoretical and Empirical Analysis in Environmental Economics

Part of the book series: New Frontiers in Regional Science: Asian Perspectives ((NFRSASIPER,volume 34))

  • 387 Accesses

Abstract

Ouchida et al. (Cleaner production technology and optimal emission tax, mimeo. 2017) examine the cleaner production technology of the pollution abatement and specify the technology as a log form. They develop the following three-stage game. In the first stage, a government sets a pollution tax rate. In the second stage, duopolistic firms decide its level of abatement investment. In the third stage, the firms engage in Cournot competition in a homogeneous product market. They obtain the explicit solution of the perfect Nash equilibrium of the game. No previous studies have derived the explicit solution of this three-stage game. By incorporating differentiated product markets into the third stage of the game, we generalize Ouchida et al. (Cleaner production technology and optimal emission tax, mimeo. 2017). We derive the explicit equilibrium values of the optimal tax rate, the level of the abatement investment, and the outputs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For example, see Katsoulacos and Xepapadeas (1996), Petrakis and Xepapadeas (1999, 2003, Section 3), Chiou and Hu (2001), and Ben Youssef (2009, 2010, 2011).

  2. 2.

    Katsoulacos and Xepapadeas (1996, Section 4), Chiou and Hu (2001), Ben Youssef (2009, 2010, 2011), and Tsai et al. (2015) employ a quadratic cost function.

  3. 3.

    For example, see Chiou and Hu (2001), Petrakis and Xepapadeas (1999, 2003, Section 3), Ben Youssef (2010), Cato (2011), and Hattori (2013).

  4. 4.

    The assumptions of d = 1 and \(\bar {a}=1\) are consistent with Wang and Wang’s (2009) model. In addition, \(\bar {a}=1\) is identical to the value used by Ben Youssef (2010), Bárcena-Ruiz and Campo (2012), Ouchida and Goto (2014, 2016a,b), Liu et al. (2015), Pal and Saha (2015), and Moner-Colonques and Rubio (2016).

  5. 5.

    The second derivatives are \(\partial ^{2}\pi _{i}/\partial a_{i}^{2}=\frac {4t^{2}}{(4+b)^{2}(4-b)^{2}}-\frac {1}{(1-a_{i})^{2}}\). Noting that the value of a i is in [0, 1), if at least t < 15∕2, the second-order condition (SOC) is satisfied.

  6. 6.

    Consequently, none of output, consumer surplus, or total tax revenue depend on t.

  7. 7.

    The SOCs are satisfied because \(d^{2}W_{1}^{\mathrm {N}}(t)/dt^{2}<0\) and \(d^{2}W_{2}^{\mathrm {N}}(t)/dt^{2}<0\) for all b ∈ [0,  1].

  8. 8.

    Subscript N stands for the non-cooperative environmental investment, and subscripts N1 and N2 express the equilibrium values realized in Region I and Regions (II and III), respectively, in Fig. 3.2. Because \(\max \{t_{\mathrm {N1}}, t_{\mathrm {N2}} \}<15/2\) for all b ∈ [0,  1], the SOC at stage 2 is satisfied.

  9. 9.

    The SOC is \(\partial ^{2}\Pi _{i}/\partial a_{i}^{2}=\frac {4t^{2}}{(4+b)^{2}(4-b)^{2}}-\frac {1}{(1-a_{i})^{2}}+4[\partial q_{j}/\partial a_{i}]^{2}<0\). For details, see footnote 13.

  10. 10.

    In fact, \((1-[(2A-\sqrt {X})/4t])-(1-[(A-\sqrt {Z})/2t])=(\sqrt {X}-2\sqrt {Z})/4t>0\).

  11. 11.

    None of output, consumer surplus, or tax revenue depends on t.

  12. 12.

    The SOC is satisfied.

  13. 13.

    Subscript C represents cooperative environmental investment, and subscripts C1 and C2 the equilibrium values realized in Regions (I and II) and Region III, respectively, in Fig. 3.2. Under precommitment of t C ∈{t C1, t C2}, the SOC at stage 2 is satisfied.

References

  • Bárcena-Ruiz JC, Campo ML (2012) Partial cross-ownership and strategic environmental policy. Resour Energy Econ 34:198–210

    Article  Google Scholar 

  • Ben Youssef S (2009) Transboundary pollution, R&D spillovers and international trade. Ann Reg Sci 43(1):235–250

    Article  Google Scholar 

  • Ben Youssef S (2010) R&D in cleaner technology and international trade. Int Game Theory Rev 12(1):61–73

    Article  Google Scholar 

  • Ben Youssef S (2011) Transboundary pollution and absorptive capacity. Environ Model Assess 16(2):205–211

    Article  Google Scholar 

  • Cato S (2011) Environmental policy in a mixed market: abatement subsidies and emission taxes. Environ Econ Policy Stud 13:283–301

    Article  Google Scholar 

  • Chiou JR, Hu JL (2001) Environmental research joint ventures under emission taxes. Environ Resour Econ 20:129–146

    Article  Google Scholar 

  • Frondel M, Horbach J, Rennings K (2007). End-of-pipe or cleaner production? An empirical comparison of environmental innovation decisions across OECD countries. Bus Strateg Environ 16(8):571–584

    Article  Google Scholar 

  • Hattori K (2013) Environmental innovation and policy harmonization in international oligopoly. Environ Develop Econ 18:162–183

    Article  Google Scholar 

  • Katsoulacos Y, Xepapadeas A (1996) Environmental R&D, spillovers and optimal policy schemes under oligopoly. In: Xepapadeas A (ed) Economic policy for the environment and natural resources. Edward Elgar, Cheltenham, pp 59–79

    Google Scholar 

  • Liu CC, Wang LFS, Lee SH (2015) Strategic environmental corporate social responsibility in a differentiated duopoly market. Econ Lett 129:108–111

    Article  Google Scholar 

  • Moner-Colonques R, Rubio SJ (2016) The strategic use of innovation to influence environmental policy: taxes versus standards. B.E. J Econ Anal Policy 16(2):973–1000

    Google Scholar 

  • Ouchida Y, Goto D (2014) Do emission subsidies reduce emission? In the context of environmental R&D organization. Econ Model 36:511–516

    Article  Google Scholar 

  • Ouchida Y, Goto D (2016a) Cournot duopoly and environmental R&D under regulator’s precommitment to an emissions tax. Appl Econ Lett 23(5):324–331

    Article  Google Scholar 

  • Ouchida Y, Goto D (2016b) Environmental research joint ventures and time-consistent emission tax: endogenous choice of R&D formation. Econ Modell 55:179–188

    Article  Google Scholar 

  • Ouchida Y, Orito Y, Okamura M (2017) Cleaner production technology and optimal emission tax, mimeo

    Google Scholar 

  • Pal R, Saha B (2015) Pollution tax, partial privatization and environment. Resour Energy Econ 40:19–35

    Article  Google Scholar 

  • Petrakis E, Xepapadeas A (1999) Does government precommitment promote environmental innovation? In: Petrakis E, Sartzetakis ES, Xepapadeas A (eds), Environmental regulation and market power: competition, time consistency and international trade. Edward Elgar, Cheltenham, pp 145–161

    Google Scholar 

  • Petrakis E, Xepapadeas A (2003) Location decisions of a polluting firm and the time consistency of environmental policy. Resour Energy Econ 25:197–214

    Article  Google Scholar 

  • Singh N, Vives X (1984) Price and quantity competition in a differentiated duopoly. RAND J Econ 15(4):546–554

    Article  Google Scholar 

  • Tsai TH, Tu K, Chiou JR (2015) Tariffs and environmental taxes in the presence of environmental R&D. Environ Resour Econ 60:413–431

    Article  Google Scholar 

  • Wang LFS, Wang J (2009) Environmental taxes in a differentiated mixed duopoly. Econ Syst 33(4):389–396

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasunori Ouchida .

Editor information

Editors and Affiliations

Appendices

Appendices

Appendices provide supplementary explanations of Sects. 3.3.2 and 3.4.2.

1.1 II Appendix A

The following results show the subgame equilibrium of output, consumer surplus, profit, total emissions, total tax revenue, and environmental damage.

$$\displaystyle \begin{aligned} \begin{array}{rcl} q(t)&=& \left\{ \begin{array}{l} \displaystyle \frac{A-t}{4+b}~~~~~~~~~~if~~\displaystyle X<0~\mathrm{or}~t \le \frac{2A-\sqrt{X}}{4},~(X\ge 0)\\ \displaystyle \frac{2A+\sqrt{X}}{4(4+b)}~~~~if~~\displaystyle t > \frac{2A-\sqrt{X}}{4},~(X\ge 0), {} \end{array} \right. \end{array} \end{aligned} $$
(3.20)
$$\displaystyle \begin{aligned} \begin{array}{rcl} CS(t)&=& \left\{ \begin{array}{l} \displaystyle (1+b)\Biggl( \frac{A-t}{4+b} \Biggr)^{2}~~~~~~~~~~if~~\displaystyle X<0~\mathrm{or}~t \le \frac{2A-\sqrt{X}}{4},~(X\ge 0)\\ \displaystyle (1+b)\Biggl( \frac{2A+\sqrt{X}}{4(4+b)} \Biggr)^{2}~~~~if~~\displaystyle t > \frac{2A-\sqrt{X}}{4},~(X\ge 0), {} \end{array} \right. \end{array} \end{aligned} $$
(3.21)
$$\displaystyle \begin{aligned} \begin{array}{rcl}\qquad\pi(t)&=& \left\{ \begin{array}{l} \displaystyle 2\Biggl( \frac{A-t}{4+b} \Biggr)^{2}~~~~~~~~~~if~~\displaystyle X<0~\mathrm{or}~t \le \frac{2A-\sqrt{X}}{4},~(X\ge 0)\\ \displaystyle 2\Biggl(\frac{2A+\sqrt{X}}{4(4+b)} \Biggr)^2+\log\Biggl(\frac{2A-\sqrt{X}}{4t} \Biggr)~~~~if~~\displaystyle t > \frac{2A-\sqrt{X}}{4},~(X\ge 0), {} \end{array} \right. \end{array} \end{aligned} $$
(3.22)
$$\displaystyle \begin{aligned} \begin{array}{rcl} E(t)&=& \left\{ \begin{array}{l} \displaystyle \frac{2(A-t)}{4+b}~~~~~~~~~~~if~~\displaystyle X<0~\mathrm{or}~t \le \frac{2A-\sqrt{X}}{4},~(X\ge 0)\\ \displaystyle \frac{(4-b)(4+b)}{8t}~~~~if~~\displaystyle t > \frac{2A-\sqrt{X}}{4},~(X\ge 0), {} \end{array} \right. \end{array} \end{aligned} $$
(3.23)
$$\displaystyle \begin{aligned} \begin{array}{rcl} T(t)&=&tE(t)= \left\{ \begin{array}{l} \displaystyle \frac{2t(A-t)}{4+b}~~~~~~~~~~if~~\displaystyle X<0~\mathrm{or}~t \le \frac{2A-\sqrt{X}}{4},~(X\ge 0)\\ \displaystyle \frac{(4-b)(4+b)}{8}~~~~if~~\displaystyle t > \frac{2A-\sqrt{X}}{4},~(X\ge 0), \end{array} \right. \end{array} \end{aligned} $$
(3.24)
$$\displaystyle \begin{aligned} \begin{array}{rcl} D(E(t))&=& \left\{ \begin{array}{l} \displaystyle 2\Biggl( \frac{A-t}{4+b} \Biggr)^{2}~~~~~~~~~~if~~\displaystyle X<0~\mathrm{or}~t \le \frac{2A-\sqrt{X}}{4},~(X\ge 0)\\ \displaystyle \frac{(4-b)^{2}(4+b)^{2}}{128t^{2}}~~~~if~~\displaystyle t > \frac{2A-\sqrt{X}}{4},~(X\ge 0). {} \end{array} \right. \end{array} \end{aligned} $$
(3.25)

1.2 II Appendix B

The following results denote the subgame equilibrium of output, consumer surplus, profit, total emissions, total tax revenue, and environmental damage.

$$\displaystyle \begin{aligned} \begin{array}{rcl} q(t)&=& \left\{ \begin{array}{l} \displaystyle \frac{A-t}{4+b}~~~~~~~if~~\displaystyle Z<0~\mathrm{or}~t \le \frac{A-\sqrt{Z}}{2},~(Z\ge 0)\\ \displaystyle \frac{A+\sqrt{Z}}{2(4+b)}~~~~if~~\displaystyle t > \frac{A-\sqrt{Z}}{2},~(Z\ge 0), {} \end{array} \right. \end{array} \end{aligned} $$
(3.26)
$$\displaystyle \begin{aligned} \begin{array}{rcl} CS(t)&=& \left\{ \begin{array}{l} \displaystyle (1+b)\Biggl( \frac{A-t}{4+b} \Biggr)^{2}~~~~~~~if~~\displaystyle Z<0~\mathrm{or}~t \le \frac{A-\sqrt{Z}}{2},~(Z\ge 0)\\ \displaystyle (1+b)\Biggl( \frac{A+\sqrt{Z}}{2(4+b)} \Biggr)^{2}~~~~if~~\displaystyle t > \frac{A-\sqrt{Z}}{2},~(Z\ge 0), {} \end{array} \right. \end{array} \end{aligned} $$
(3.27)
$$\displaystyle \begin{aligned} \begin{array}{rcl} \pi(t)&=& \left\{ \begin{array}{l} \displaystyle 2\Biggl( \frac{A-t}{4+b} \Biggr)^{2}~~~~~~~~~~if~~\displaystyle Z<0~\mathrm{or}~t \le \frac{A-\sqrt{Z}}{2},~(Z\ge 0)\\ \displaystyle 2\Biggl(\frac{2A+\sqrt{Z}}{2(4+b)} \Biggr)^2+\log\Biggl(\frac{A-\sqrt{Z}}{2t} \Biggr)~~~~if~~\displaystyle t > \frac{A-\sqrt{Z}}{2},~(Z\ge 0), {} \end{array} \right. \end{array} \end{aligned} $$
(3.28)
$$\displaystyle \begin{aligned} \begin{array}{rcl} E(t)&=& \left\{ \begin{array}{l} \displaystyle \frac{2(A-t)}{4+b}~~~~~~~if~~\displaystyle Z<0~\mathrm{or}~t \le \frac{A-\sqrt{Z}}{2},~(Z\ge 0)\\ \displaystyle \frac{(4+b)}{2t}~~~~if~~\displaystyle t > \frac{A-\sqrt{Z}}{2},~(Z\ge 0), {} \end{array} \right. \end{array} \end{aligned} $$
(3.29)
$$\displaystyle \begin{aligned} \begin{array}{rcl} T(t)&=&tE(t)= \left\{ \begin{array}{l} \displaystyle \frac{2t(A-t)}{4+b}~~~~~if~~\displaystyle Z<0~\mathrm{or}~t \le \frac{A-\sqrt{Z}}{2},~(Z\ge 0)\\ \displaystyle \frac{(4+b)}{2}~~~~~~if~~\displaystyle t > \frac{A-\sqrt{Z}}{2},~(Z\ge 0), \end{array} \right. \end{array} \end{aligned} $$
(3.30)
$$\displaystyle \begin{aligned} \begin{array}{rcl} D(E(t))&=& \left\{ \begin{array}{l} \displaystyle 2\Biggl( \frac{A-t}{4+b} \Biggr)^{2}~~~~~if~~\displaystyle Z<0~\mathrm{or}~t \le \frac{A-\sqrt{Z}}{2},~(Z\ge 0)\\ \displaystyle \frac{(4+b)^{2}}{8t^{2}}~~~~~if~~\displaystyle t > \frac{A-\sqrt{Z}}{2},~(Z\ge 0). {} \end{array} \right. \end{array} \end{aligned} $$
(3.31)

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ouchida, Y., Okamura, M., Orito, Y. (2019). Emission Taxation and Investment in Cleaner Production: The Case of Differentiated Duopoly. In: Nakayama, K., Miyata, Y. (eds) Theoretical and Empirical Analysis in Environmental Economics. New Frontiers in Regional Science: Asian Perspectives, vol 34. Springer, Singapore. https://doi.org/10.1007/978-981-13-2363-8_3

Download citation

Publish with us

Policies and ethics