Skip to main content

Design Considerations of Microalgal Culture Ponds and Photobioreactors for Wastewater Treatment and Biomass Cogeneration

  • Chapter
  • First Online:
Microalgae Biotechnology for Development of Biofuel and Wastewater Treatment

Abstract

Despite highly potential feedstock for biofuel production, high microalgal biomass production cost has been a major obstacle for commercialization of microalgal bioenergy. Coupling cultivation of microalgal in wastewater for simultaneous nutrients/pollutants removal and biomass cogeneration has been considered as a feasible solution for reducing microalgal production cost. Microalgae are photosynthetic microorganisms which require large amount of nitrogen and phosphorus for their growth and releases oxygen during photosynthesis process. Nevertheless, it is hard to maintain pure cultures of these algae in wastewater treatment processes. Therefore, the utilization of natural and artificial microalga consortia including either microalgae solo or microalgae and bacteria has been studied by several groups. Whatever the mode of culture of microalgae such as single or poly-culture of algae, algae-bacteria, algae-yeast, algae-fungi in wastewater, its production is based on the sample principles such as light availability, appropriate mass and heat transfer, and adequate control of operational parameters. This chapter is aimed at taking consideration of these principles in designing microalgal culture ponds and photobioreactors for wastewater treatment and biomass production. Different emerging designs and important factors and the parameters influencing their performance are reviewed. Mechanism of microorganism interactions and reactor designs used for polyculture cultivation in wastewaters to achieving win-win benefit are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Raouf N, Al-Homaidan AA, Ibraheem IBM. Microalgae and wastewater treatment. Saudi J Biol Sci. 2012;19:257–75.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Acién Fernández FG, Fernández Sevilla JM, Molina Grima E. Photobioreactors for the production of microalgae. Rev Environ Sci Biotechnol. 2013;12:131–51.

    Article  CAS  Google Scholar 

  • Acien FG, Fernandez JM, Magan JJ, Molina E. Production cost of a real microalgae production plant and strategies to reduce it. Biotechnol Adv. 2012;30:1344–53.

    Article  PubMed  CAS  Google Scholar 

  • Acien FG, Gomez-Serrano C, Morales-Amaral MM, Fernandez-Sevilla JM, Molina-Grima E. Wastewater treatment using microalgae: how realistic a contribution might it be to significant urban wastewater treatment? Appl Microbiol Biotechnol. 2016;100:9013–22.

    Article  PubMed  CAS  Google Scholar 

  • Acién FG, Molina E, Reis A, Torzillo G, Zittelli GC, Sepúlveda C, et al. 1 – Photobioreactors for the production of microalgae A2 – Gonzalez-Fernandez, Cristina. In: Muñoz R, editor. Microalgae-based biofuels and bioproducts. Kindlington: Woodhead Publishing; 2017. p. 1–44.

    Google Scholar 

  • Amavizca E, Bashan Y, Ryu CM, Farag MA, Bebout BM, de-Bashan LE. Enhanced performance of the microalga Chlorella sorokiniana remotely induced by the plant growth-promoting bacteria Azospirillum brasilense and Bacillus pumilus. Sci Rep. 2017;7:41310.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Amin SA, Green DH, Hart MC, Küpper FC, Sunda WG, Carrano CJ. Photolysis of iron–siderophore chelates promotes bacterial–algal mutualism. Proc Natl Acad Sci. 2009;106:17071–6.

    Article  PubMed  PubMed Central  Google Scholar 

  • Apel AC, Pfaffinger CE, Basedahl N, Mittwollen N, Göbel J, Sauter J, et al. Open thin-layer cascade reactors for saline microalgae production evaluated in a physically simulated Mediterranean summer climate. Algal Res. 2017;25:381–90.

    Article  Google Scholar 

  • Ask J, Karlsson J, Persson L, Ask P, Byström P, Jansson M. Whole-lake estimates of carbon flux through algae and bacteria in benthic and pelagic habitats of clear-water lakes. Ecology. 2009;90:1923–32.

    Article  PubMed  Google Scholar 

  • Aslan S, Kapdan IK. Batch kinetics of nitrogen and phosphorus removal from synthetic wastewater by algae. Ecol Eng. 2006;28:64–70.

    Article  Google Scholar 

  • Bacellar Mendes LB, Vermelho AB. Allelopathy as a potential strategy to improve microalgae cultivation. Biotechnol Biofuels. 2013;6:152.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Barsanti L, Gualtieri P. Algae: anatomy, biochemistry, and biotechnology. Boca Raton: CRC; 2005.

    Book  Google Scholar 

  • Bashan Y, de-Bashan LE. Chapter 2: How the plant growth-promoting bacterium Azospirillum promotes plant growth—a critical assessment. In: Sparks DL, editor. Advances in agronomy. Cambridge: Academic; 2010. p. 77–136.

    Google Scholar 

  • Boonma S, Chaiklangmuang S, Chaiwongsar S, Pekkoh J, Pumas C, Ungsethaphand T, et al. Enhanced carbon dioxide fixation and bio-oil production of a microalgal consortium. Clean (Weinh). 2015;43:761–6.

    CAS  Google Scholar 

  • Borowitzka MA. Limits to growth. In: Wong Y-S, Tam NFY, editors. Wastewater treatment with algae. Berlin/Heidelberg: Springer Berlin Heidelberg; 1998. p. 203–26.

    Chapter  Google Scholar 

  • Borowitzka MA. Commercial production of microalgae: ponds, tanks, tubes and fermenters. J Biotechnol. 1999;70:313–21.

    Article  CAS  Google Scholar 

  • Bosma R, van Zessen E, Reith JH, Tramper J, Wijffels RH. Prediction of volumetric productivity of an outdoor photobioreactor. Biotechnol Bioeng. 2007;97:1108–20.

    Article  PubMed  CAS  Google Scholar 

  • Brennan L, Owende P. Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sust Energ Rev. 2010;14:557–77.

    Article  CAS  Google Scholar 

  • Brindley C, Acién Fernández FG, Fernández-Sevilla JM. Analysis of light regime in continuous light distributions in photobioreactors. Bioresour Technol. 2011;102:3138–48.

    Article  PubMed  CAS  Google Scholar 

  • Cai S, Hu C, Du S. Comparisons of growth and biochemical composition between mixed culture of alga and yeast and monocultures. J Biosci Bioeng. 2007;104:391–7.

    Article  PubMed  CAS  Google Scholar 

  • Cai T, Park SY, Li Y. Nutrient recovery from wastewater streams by microalgae: status and prospects. Renew Sust Energ Rev. 2013;19:360–9.

    Article  CAS  Google Scholar 

  • Carney LT, Lane TW. Parasites in algae mass culture. Front Microbiol. 2014;5:278.

    Article  PubMed  PubMed Central  Google Scholar 

  • Carvalho AP, Malcata FX. Kinetic modeling of the autotrophic growth of Pavlova lutheri: study of the combined influence of light and temperature. Biotechnol Prog. 2003;19:1128–35.

    Article  PubMed  CAS  Google Scholar 

  • Cembella AD. Chemical ecology of eukaryotic microalgae in marine ecosystems. Phycologia. 2003;42:420–47.

    Article  Google Scholar 

  • Cheirsilp B, Suwannarat W, Niyomdecha R. Mixed culture of oleaginous yeast Rhodotorula glutinis and microalga Chlorella vulgaris for lipid production from industrial wastes and its use as biodiesel feedstock. New Biotechnol. 2011;28:362–8.

    Article  CAS  Google Scholar 

  • Chen CY, Yeh KL, Aisyah R, Lee DJ, Chang JS. Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. Bioresour Technol. 2011;102:71–81.

    Article  CAS  PubMed  Google Scholar 

  • Chen G, Zhao L, Qi Y. Enhancing the productivity of microalgae cultivated in wastewater toward biofuel production: a critical review. Appl Energy. 2015;137:282–91.

    Article  Google Scholar 

  • Cheng P, Ji B, Gao L, Zhang W, Wang J, Liu T. The growth, lipid and hydrocarbon production of Botryococcus braunii with attached cultivation. Bioresour Technol. 2013;138:95–100.

    Article  PubMed  CAS  Google Scholar 

  • Chinnasamy S, Bhatnagar A, Hunt RW, Das KC. Microalgae cultivation in a wastewater dominated by carpet mill effluents for biofuel applications. Bioresour Technol. 2010;101:3097.

    Article  PubMed  CAS  Google Scholar 

  • Cho D-H, Ramanan R, Heo J, Lee J, Kim B-H, Oh H-M, et al. Enhancing microalgal biomass productivity by engineering a microalgal–bacterial community. Bioresour Technol. 2015;175:578–85.

    Article  PubMed  CAS  Google Scholar 

  • Choix FJ, de-Bashan LE, Bashan Y. Enhanced accumulation of starch and total carbohydrates in alginate-immobilized Chlorella spp. induced by Azospirillum brasilense: I. Autotrophic conditions. Enzym Microb Technol. 2012;51:294–9.

    Article  CAS  Google Scholar 

  • Choix FJ, Bashan Y, Mendoza A, de-Bashan LE. Enhanced activity of ADP glucose pyrophosphorylase and formation of starch induced by Azospirillum brasilense in Chlorella vulgaris. J Biotechnol. 2014;177:22–34.

    Article  PubMed  CAS  Google Scholar 

  • Chojnacka K, Chojnacki A, Górecka H. Trace element removal by Spirulina sp. from copper smelter and refinery effluents. Hydrometallurgy. 2004;73:147–53.

    Article  CAS  Google Scholar 

  • Choudhary P, Prajapati SK, Kumar P, Malik A, Pant KK. Development and performance evaluation of an algal biofilm reactor for treatment of multiple wastewaters and characterization of biomass for diverse applications. Bioresour Technol. 2017;224:276–84.

    Article  PubMed  CAS  Google Scholar 

  • Christenson L, Sims R. Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts. Biotechnol Adv. 2011;29:686–702.

    Article  CAS  PubMed  Google Scholar 

  • Cornet JF, Dussap CG. A simple and reliable formula for assessment of maximum volumetric productivities in photobioreactors. Biotechnol Prog. 2009;25:424–35.

    Article  PubMed  CAS  Google Scholar 

  • Craggs RJ, Lundquist TJ, Benemann JR. Wastewater treatment and algal biofuel production. In: Borowitzka MA, Moheimani NR, editors. Algae for biofuels and energy. Dordrecht: Springer Netherlands; 2013. p. 153–63.

    Chapter  Google Scholar 

  • Croft MT, Lawrence AD, Raux-Deery E, Warren MJ, Smith AG. Algae acquire vitamin B12 through a symbiotic relationship with bacteria. Nature. 2005;438:90–3.

    Article  PubMed  CAS  Google Scholar 

  • Czarena LC, Michael M, Xinyi E, Aubrey PS, Mark C, Rodney A. Influence of media composition on the growth rate of Chlorella vulgaris and Scenedesmus acutus utilized for CO2 mitigation. J Biochem Technol. 2012;4(2):589–94.

    Google Scholar 

  • de la Noüe J, Laliberté G, Proulx D. Algae and waste water. J Appl Phycol. 1992;4:247–54.

    Article  Google Scholar 

  • de-Bashan LE, Bashan Y, Moreno M, Lebsky VK, Bustillos JJ. Increased pigment and lipid content, lipid variety, and cell and population size of the microalgae Chlorella spp. when co-immobilized in alginate beads with the microalgae-growth-promoting bacterium Azospirillum brasilense. Can J Microbiol. 2002;48:514–21.

    Article  PubMed  CAS  Google Scholar 

  • de-Bashan LE, Hernandez J-P, Morey T, Bashan Y. Microalgae growth-promoting bacteria as “helpers” for microalgae: a novel approach for removing ammonium and phosphorus from municipal wastewater. Water Res. 2004;38:466–74.

    Article  PubMed  CAS  Google Scholar 

  • De-Bashan LE, Antoun H, Bashan Y. Involvement of indole-3-acetic acid produced by the growth-promoting bacterium Azospirillium spp. in promoting growth of Chlorella vulgaris. J Phycol. 2008a;44:938–47.

    Google Scholar 

  • De-Bashan LE, Magallon P, Antoun H, Bashan Y. Role of glutamate dehydrogenase and glutamine synthetase in Chlorella vulgaris during assimilation of ammonium when jointly immobilized with the microalgae-growth-promoting bacterium Aospirillum brasilense. J Phycol. 2008b;44:1188–96.

    Article  PubMed  CAS  Google Scholar 

  • de-Bashan LE, Schmid M, Rothballer M, Hartmann A, Bashan Y. Cell-cell interaction in the eukaryote-prokaryote model of the microalgae Chlorella vulgaris and the bacterium Azospirillum brasilense immobilized in polymer beads. J Phycol. 2011;47:1350–9.

    Article  PubMed  Google Scholar 

  • de-Bashan LE, Mayali X, Bebout BM, Weber PK, Detweiler AM, Hernandez J-P, et al. Establishment of stable synthetic mutualism without co-evolution between microalgae and bacteria demonstrated by mutual transfer of metabolites (NanoSIMS isotopic imaging) and persistent physical association (Fluorescent in situ hybridization). Algal Res. 2016;15:179–86.

    Article  Google Scholar 

  • Delgadillo-Mirquez L, Lopes F, Taidi B, Pareau D. Nitrogen and phosphate removal from wastewater with a mixed microalgae and bacteria culture. Biotechnol Rep. 2016;11:18–26.

    Article  Google Scholar 

  • Doucha J, Lívanský K. Productivity, CO2/O2 exchange and hydraulics in outdoor open high density microalgal (Chlorella sp.) photobioreactors operated in a Middle and Southern European climate. J Appl Phycol. 2006;18:811–26.

    Article  CAS  Google Scholar 

  • Doucha J, Lívanský K. Outdoor open thin-layer microalgal photobioreactor: potential productivity. J Appl Phycol. 2009;21:111–7.

    Article  CAS  Google Scholar 

  • Doucha J, Straka F, Lívanský K. Utilization of flue gas for cultivation of microalgae Chlorella sp. in an outdoor open thin-layer photobioreactor. J Appl Phycol. 2005;17:403–12.

    Article  Google Scholar 

  • Durham BP, Sharma S, Luo H, Smith CB, Amin SA, Bender SJ, et al. Cryptic carbon and sulfur cycling between surface ocean plankton. Proc Natl Acad Sci. 2015;112:453–7.

    Article  PubMed  CAS  Google Scholar 

  • Fergola P, Cerasuolo M, Pollio A, Pinto G, DellaGreca M. Allelopathy and competition between Chlorella vulgaris and Pseudokirchneriella subcapitata: experiments and mathematical model. Ecol Model. 2007;208:205–14.

    Article  Google Scholar 

  • Fernández I, Acién FG, Guzmán JL, Berenguel M, Mendoza JL. Dynamic model of an industrial raceway reactor for microalgae production. Algal Res. 2016;17:67–78.

    Article  Google Scholar 

  • Ferrero EM, de Godos I, Rodríguez EM, García-Encina PA, Muñoz R, Bécares E. Molecular characterization of bacterial communities in algal–bacterial photobioreactors treating piggery wastewaters. Ecol Eng. 2012;40:121–30.

    Article  Google Scholar 

  • Fouilland E. Biodiversity as a tool for waste phycoremediation and biomass production. Rev Environ Sci Biotechnol. 2012;11:1–4.

    Article  Google Scholar 

  • Fouilland E, Vasseur C, Leboulanger C, Le Floc’h E, Carré C, Marty B, et al. Coupling algal biomass production and anaerobic digestion: production assessment of some native temperate and tropical microalgae. Biomass Bioenergy. 2014;70:564–9.

    Article  CAS  Google Scholar 

  • Fuentes JL, Garbayo I, Cuaresma M, Montero Z, Gonzalez-Del-Valle M, Vilchez C. Impact of microalgae-bacteria interactions on the production of algal biomass and associated compounds. Mar Drugs. 2016;14:100.

    Article  PubMed Central  CAS  Google Scholar 

  • Gao F, Yang ZH, Li C, Zeng GM, Ma DH, Zhou L. A novel algal biofilm membrane photobioreactor for attached microalgae growth and nutrients removal from secondary effluent. Bioresour Technol. 2015;179:8–12.

    Article  PubMed  CAS  Google Scholar 

  • Genin SN, Stewart Aitchison J, Grant Allen D. Design of algal film photobioreactors: material surface energy effects on algal film productivity, colonization and lipid content. Bioresour Technol. 2014;155:136–43.

    Article  PubMed  CAS  Google Scholar 

  • Genin SN, Aitchison JS, Allen DG. Novel waveguide reactor design for enhancing algal biofilm growth. Algal Res. 2015;12:529–38.

    Article  Google Scholar 

  • Gómez-Pérez CA, Espinosa J, Montenegro Ruiz LC, van Boxtel AJB. CFD simulation for reduced energy costs in tubular photobioreactors using wall turbulence promoters. Algal Res. 2015;12:1–9.

    Article  Google Scholar 

  • Gómez-Pérez CA, Espinosa Oviedo JJ, Montenegro Ruiz LC, van Boxtel AJB. Twisted tubular photobioreactor fluid dynamics evaluation for energy consumption minimization. Algal Res. 2017;27:65–72.

    Article  Google Scholar 

  • Gonçalves AL, Pires JCM, Simões M. A review on the use of microalgal consortia for wastewater treatment. Algal Res. 2017;24:403–15.

    Article  Google Scholar 

  • González JM, Simó R, Massana R, Covert JS, Casamayor EO, Pedrós-Alió C, et al. Bacterial community structure associated with a dimethylsulfoniopropionate-producing North Atlantic algal bloom. Appl Environ Microbiol. 2000;66:4237–46.

    Article  PubMed  PubMed Central  Google Scholar 

  • Grima EM, Camacho FG, Pérez JAS, Sevilla JMF, Fernández FGA, Gómez AC. A mathematical model of microalgal growth in light-limited chemostat culture. J Chem Technol Biotechnol. 1994;61:167–73.

    Article  Google Scholar 

  • Grobbelaar JU. Algal nutrition – mineral nutrition. In: Handbook of microalgal culture. Oxford/Ames: Blackwell Publishing Ltd; 2007. p. 95–115.

    Google Scholar 

  • Grossart HP, Czub G, Simon M. Algae–bacteria interactions and their effects on aggregation and organic matter flux in the sea. Environ Microbiol. 2006;8:1074–84.

    Article  PubMed  Google Scholar 

  • Grover JP. Resource competition and community structure in aquatic micro-organisms: experimental studies of algae and bacteria along a gradient of organic carbon to inorganic phosphorus supply. J Plankton Res. 2000;22:1591–610.

    Article  CAS  Google Scholar 

  • Gupta PL, Lee SM, Choi HJ. A mini review: photobioreactors for large scale algal cultivation. World J Microbiol Biotechnol. 2015;31:1409–17.

    Article  PubMed  CAS  Google Scholar 

  • Habibi A, Teymouri A, Delavari Amrei H, Pajoum shariati F. A novel open raceway pond design for microalgae growth and nutrients removal from treated slaughterhouse wastewater. Pollution. 2018;4:103–10.

    CAS  Google Scholar 

  • Hellebust JA, Ahmad I. Regulation of nitrogen assimilation in green microalgae. Biol Oceanogr. 1989;6:241–55.

    Google Scholar 

  • Hernandez J-P, de-Bashan LE, Rodriguez DJ, Rodriguez Y, Bashan Y. Growth promotion of the freshwater microalga Chlorella vulgaris by the nitrogen-fixing, plant growth-promoting bacterium Bacillus pumilus from arid zone soils. Eur J Soil Biol. 2009;45:88–93.

    Article  CAS  Google Scholar 

  • Hernandez D, Riano B, Coca M, Garcia-Gonzalez MC. Treatment of agro-industrial wastewater using microalgae-bacteria consortium combined with anaerobic digestion of the produced biomass. Bioresour Technol. 2013;135:598–603.

    Article  PubMed  CAS  Google Scholar 

  • Hoh D, Watson S, Kan E. Algal biofilm reactors for integrated wastewater treatment and biofuel production: a review. Chem Eng J. 2016;287:466–73.

    Article  CAS  Google Scholar 

  • Hu Y, Hao X, van Loosdrecht M, Chen H. Enrichment of highly settleable microalgal consortia in mixed cultures for effluent polishing and low-cost biomass production. Water Res. 2017;125:11–22.

    Article  PubMed  CAS  Google Scholar 

  • Jagmann N, Philipp B. Reprint of design of synthetic microbial communities for biotechnological production processes. J Biotechnol. 2014;192(Pt B):293–301.

    Article  PubMed  CAS  Google Scholar 

  • Jerez CG, Malapascua JR, Sergejevová M, Masojídek J, Figueroa FL. Chlorella fusca (Chlorophyta) grown in thin-layer cascades: estimation of biomass productivity by in-vivo chlorophyll a fluorescence monitoring. Algal Res. 2016;17:21–30.

    Article  Google Scholar 

  • Johnson KR, Admassu W. Mixed algae cultures for low cost environmental compensation in cultures grown for lipid production and wastewater remediation. J Chem Technol Biotechnol. 2013;88:992–8.

    Article  CAS  Google Scholar 

  • Jorquera O, Kiperstok A, Sales EA, Embirucu M, Ghirardi ML. Comparative energy life-cycle analyses of microalgal biomass production in open ponds and photobioreactors. Bioresour Technol. 2010;101:1406–13.

    Article  PubMed  CAS  Google Scholar 

  • Kagami M, de Bruin A, Ibelings BW, Van Donk E. Parasitic chytrids: their effects on phytoplankton communities and food-web dynamics. Hydrobiologia. 2007;578:113–29.

    Article  Google Scholar 

  • Karemore A, Ramalingam D, Yadav G, Subramanian G, Sen R. Photobioreactors for improved algal biomass production: analysis and design considerations. In: Algal biorefinery: an integrated approach. Cham: Springer; 2015. p. 103–24.

    Chapter  Google Scholar 

  • Kazamia E, Czesnick H, Nguyen TTV, Croft MT, Sherwood E, Sasso S, et al. Mutualistic interactions between vitamin B12-dependent algae and heterotrophic bacteria exhibit regulation. Environ Microbiol. 2012;14:1466–76.

    Article  PubMed  CAS  Google Scholar 

  • Kesaano M, Sims RC. Algal biofilm based technology for wastewater treatment. Algal Res. 2014;5:231–40.

    Article  Google Scholar 

  • Kim B-H, Ramanan R, Cho D-H, Oh H-M, Kim H-S. Role of Rhizobium, a plant growth promoting bacterium, in enhancing algal biomass through mutualistic interaction. Biomass Bioenergy. 2014;69:95–105.

    Article  CAS  Google Scholar 

  • Koreivienė J, Valčiukas R, Karosienė J, Baltrėnas P. Testing of Chlorella/Scenedesmus microalgae consortia for remediation of wastewater, CO2 mitigation and algae biomass feasibility for lipid production. J Environ Eng Landsc Manag. 2014;22:105–14.

    Article  Google Scholar 

  • Kumar K, Dasgupta CN, Nayak B, Lindblad P, Das D. Development of suitable photobioreactors for CO2 sequestration addressing global warming using green algae and cyanobacteria. Bioresour Technol. 2011;102:4945–53.

    Article  PubMed  CAS  Google Scholar 

  • Larsdotter K. Wastewater treatment with microalgae – a literature review. Vatten. 2006;62:31–8.

    CAS  Google Scholar 

  • Le Chevanton M, Garnier M, Lukomska E, Schreiber N, Cadoret J-P, Saint-Jean B, et al. Effects of nitrogen limitation on Dunaliella sp.–Alteromonas sp. interactions: from mutualistic to competitive relationships. Front Mar Sci. 2016;3:123.

    Article  Google Scholar 

  • Leyva LA, Bashan Y, Mendoza A, de-Bashan LE. Erratum to: accumulation of fatty acids in Chlorella vulgaris under heterotrophic conditions in relation to activity of acetyl-CoA carboxylase, temperature, and co-immobilization with Azospirillum brasilense. Naturwissenschaften. 2014;101:1115.

    Article  CAS  Google Scholar 

  • Leyva LA, Bashan Y, de-Bashan LE. Activity of acetyl-CoA carboxylase is not directly linked to accumulation of lipids when Chlorella vulgaris is co-immobilised with Azospirillum brasilense in alginate under autotrophic and heterotrophic conditions. Ann Microbiol. 2015;65:339–49.

    Article  CAS  Google Scholar 

  • Lin L, Chan GY, Jiang BL, Lan CY. Use of ammoniacal nitrogen tolerant microalgae in landfill leachate treatment. Waste Manag. 2007;27:1376–82.

    Article  PubMed  CAS  Google Scholar 

  • Lívanský K, Doucha J. CO2 and O2 gas exchange in outdoor thin-layer high density microalgal cultures. J Appl Phycol. 1996;8:353–8.

    Article  Google Scholar 

  • Magdouli S, Brar SK, Blais JF. Co-culture for lipid production: advances and challenges. Biomass Bioenergy. 2016;92:20–30.

    Article  CAS  Google Scholar 

  • Martínez ME, Jiménez JM, El Yousfi F. Influence of phosphorus concentration and temperature on growth and phosphorus uptake by the microalga Scenedesmus obliquus. Bioresour Technol. 1999;67:233–40.

    Article  Google Scholar 

  • Masojídek J, Kopecký J, Giannelli L, Torzillo G. Productivity correlated to photobiochemical performance of Chlorella mass cultures grown outdoors in thin-layer cascades. J Ind Microbiol Biotechnol. 2011;38:307–17.

    Article  PubMed  CAS  Google Scholar 

  • Mendoza JL, Granados MR, de Godos I, Acién FG, Molina E, Banks C, et al. Fluid-dynamic characterization of real-scale raceway reactors for microalgae production. Biomass Bioenergy. 2013;54:267–75.

    Article  CAS  Google Scholar 

  • Meza B, de-Bashan LE, Bashan Y. Involvement of indole-3-acetic acid produced by Azospirillum brasilense in accumulating intracellular ammonium in Chlorella vulgaris. Res Microbiol. 2015;166:72–83.

    Article  PubMed  CAS  Google Scholar 

  • Mirón AS, Gómez AC, Camacho FG, Grima EM, Chisti Y. Comparative evaluation of compact photobioreactors for large-scale monoculture of microalgae. In: Osinga R, Tramper J, Burgess JG, Wijffels RH, editors. Progress in industrial microbiology. Amsterdam: Elsevier; 1999. p. 249–70.

    Google Scholar 

  • Molina Grima E, Fernández FGA, Garcıa Camacho F, Chisti Y. Photobioreactors: light regime, mass transfer, and scaleup. J Biotechnol. 1999;70:231–47.

    Article  CAS  Google Scholar 

  • Morales-Amaral MM, Gómez-Serrano C, Acién FG, Fernández-Sevilla JM, Molina-Grima E. Outdoor production of Scenedesmus sp. in thin-layer and raceway reactors using centrate from anaerobic digestion as the sole nutrient source. Algal Res. 2015a;12:99–108.

    Article  Google Scholar 

  • Morales-Amaral MM, Gómez-Serrano C, Acién FG, Fernández-Sevilla JM, Molina-Grima E. Production of microalgae using centrate from anaerobic digestion as the nutrient source. Algal Res. 2015b;9:297–305.

    Article  Google Scholar 

  • Morales-Sánchez D, Martinez-Rodriguez OA, Kyndt J, Martinez A. Heterotrophic growth of microalgae: metabolic aspects. World J Microbiol Biotechnol. 2015;31:1–9.

    Article  PubMed  CAS  Google Scholar 

  • Munoz R, Guieysse B. Algal-bacterial processes for the treatment of hazardous contaminants: a review. Water Res. 2006;40:2799–815.

    Article  PubMed  CAS  Google Scholar 

  • Mustafa E-M, Phang S-M, Chu W-L. Use of an algal consortium of five algae in the treatment of landfill leachate using the high-rate algal pond system. J Appl Phycol. 2011;24:953–63.

    Article  CAS  Google Scholar 

  • Neilson AH, Lewin RA. The uptake and utilization of organic carbon by algae: an essay in comparative biochemistry. Phycologia. 1974;13:227–64.

    Article  CAS  Google Scholar 

  • Olguin EJ. Dual purpose microalgae-bacteria-based systems that treat wastewater and produce biodiesel and chemical products within a biorefinery. Biotechnol Adv. 2012;30:1031–46.

    Article  PubMed  CAS  Google Scholar 

  • Oswald WJ. Micro-algae and waste-water treatment. Cambridge: Cambridge University Press; 1988.

    Google Scholar 

  • Paerl HW, Pinckney JL. A mini-review of microbial consortia: their roles in aquatic production and biogeochemical cycling. Microb Ecol. 1996;31:225–47.

    Article  PubMed  CAS  Google Scholar 

  • Palacios OA, Choix FJ, Bashan Y, de-Bashan LE. Influence of tryptophan and indole-3-acetic acid on starch accumulation in the synthetic mutualistic Chlorella sorokinianaAzospirillum brasilense system under heterotrophic conditions. Res Microbiol. 2016;167:367–79.

    Article  PubMed  CAS  Google Scholar 

  • Palmer CM. A composite rating of algae tolerating organic pollution. J Phycol. 1969;5:78–82.

    Article  PubMed  CAS  Google Scholar 

  • Park JBK, Craggs RJ, Shilton AN. Recycling algae to improve species control and harvest efficiency from a high rate algal pond. Water Res. 2011a;45:6637–49.

    Article  PubMed  CAS  Google Scholar 

  • Park JB, Craggs RJ, Shilton AN. Wastewater treatment high rate algal ponds for biofuel production. Bioresour Technol. 2011b;102:35–42.

    Article  PubMed  CAS  Google Scholar 

  • Picardo MC, de Medeiros JL, OdQF A, Chaloub RM. Effects of CO2 enrichment and nutrients supply intermittency on batch cultures of Isochrysis galbana. Bioresour Technol. 2013;143:242–50.

    Article  PubMed  CAS  Google Scholar 

  • Pienkos PT, Darzins A. The promise and challenges of microalgal-derived biofuels. Biofuels Bioprod Biorefin. 2009;3:431–40.

    Article  CAS  Google Scholar 

  • Posadas E, Garcia-Encina PA, Soltau A, Dominguez A, Diaz I, Munoz R. Carbon and nutrient removal from centrates and domestic wastewater using algal-bacterial biofilm bioreactors. Bioresour Technol. 2013;139:50–8.

    Article  PubMed  CAS  Google Scholar 

  • Posadas E, García-Encina PA, Domínguez A, Díaz I, Becares E, Blanco S, et al. Enclosed tubular and open algal–bacterial biofilm photobioreactors for carbon and nutrient removal from domestic wastewater. Ecol Eng. 2014;67:156–64.

    Article  Google Scholar 

  • Posten C. Design principles of photo-bioreactors for cultivation of microalgae. Eng Life Sci. 2009;9:165–77.

    Article  CAS  Google Scholar 

  • Přibyl P, Cepák V, Kaštánek P, Zachleder V. Elevated production of carotenoids by a new isolate of Scenedesmus sp. Algal Res. 2015;11:22–7.

    Article  Google Scholar 

  • Pulz O. Photobioreactors: production systems for phototrophic microorganisms. Appl Microbiol Biotechnol. 2001;57:287–93.

    Article  PubMed  CAS  Google Scholar 

  • Qiang H, Richmond A. Productivity and photosynthetic efficiency of Spirulina platensis as affected by light intensity, algal density and rate of mixing in a flat plate photobioreactor. J Appl Phycol. 1996;8:139–45.

    Article  Google Scholar 

  • Qin L, Wang Z, Sun Y, Shu Q, Feng P, Zhu L, et al. Microalgae consortia cultivation in dairy wastewater to improve the potential of nutrient removal and biodiesel feedstock production. Environ Sci Pollut Res Int. 2016;23:8379–87.

    Article  PubMed  CAS  Google Scholar 

  • Quinn JC, Yates T, Douglas N, Weyer K, Butler J, Bradley TH, et al. Nannochloropsis production metrics in a scalable outdoor photobioreactor for commercial applications. Bioresour Technol. 2012;117:164–71.

    Article  PubMed  CAS  Google Scholar 

  • Rajendran A, Hu B. Mycoalgae biofilm: development of a novel platform technology using algae and fungal cultures. Biotechnol Biofuels. 2016;9:112.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ramanan R, Kim BH, Cho DH, Oh HM, Kim HS. Algae-bacteria interactions: evolution, ecology and emerging applications. Biotechnol Adv. 2016;34:14–29.

    Article  PubMed  CAS  Google Scholar 

  • Ravikumar R. Micro algae in open raceways. In: Bajpai R, Prokop A, Zappi M, editors. Algal biorefineries: volume 1: cultivation of cells and products. Dordrecht: Springer Netherlands; 2014. p. 127–46.

    Chapter  Google Scholar 

  • Rawat I, Ranjith Kumar R, Mutanda T, Bux F. Dual role of microalgae: phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Appl Energy. 2011;88:3411–24.

    Article  CAS  Google Scholar 

  • Rego D, Redondo LM, Geraldes V, Costa L, Navalho J, Pereira MT. Control of predators in industrial scale microalgae cultures with pulsed electric fields. Bioelectrochemistry. 2015;103:60–4.

    Article  PubMed  CAS  Google Scholar 

  • Renuka N, Sood A, Ratha SK, Prasanna R, Ahluwalia AS. Evaluation of microalgal consortia for treatment of primary treated sewage effluent and biomass production. J Appl Phycol. 2013;25:1529–37.

    Article  CAS  Google Scholar 

  • Rivas MO, Vargas P, Riquelme CE. Interactions of Botryococcus braunii cultures with bacterial biofilms. Microb Ecol. 2010;60:628–35.

    Article  PubMed  CAS  Google Scholar 

  • Romero Villegas GI, Fiamengo M, Acién Fernández FG, Molina Grima E. Outdoor production of microalgae biomass at pilot-scale in seawater using centrate as the nutrient source. Algal Res. 2017;25:538–48.

    Article  Google Scholar 

  • Rubio FC, Fernández FGA, Pérez JAS, Camacho FG, Grima EM. Prediction of dissolved oxygen and carbon dioxide concentration profiles in tubular photobioreactors for microalgal culture. Biotechnol Bioeng. 1999;62:71–86.

    Article  PubMed  CAS  Google Scholar 

  • Rubio FC, Camacho FG, Sevilla JMF, Chisti Y, Grima EM. A mechanistic model of photosynthesis in microalgae. Biotechnol Bioeng. 2003;81:459–73.

    Article  PubMed  CAS  Google Scholar 

  • Safonova E, Kvitko KV, Iankevitch MI, Surgko LF, Afti IA, Reisser W. Biotreatment of industrial wastewater by selected algal-bacterial consortia. Eng Life Sci. 2004;4:347–53.

    Article  CAS  Google Scholar 

  • Sanchez JF, Fernandez-Sevilla JM, Acien FG, Ceron MC, Perez-Parra J, Molina-Grima E. Biomass and lutein productivity of Scenedesmus almeriensis: influence of irradiance, dilution rate and temperature. Appl Microbiol Biotechnol. 2008;79:719–29.

    Article  PubMed  CAS  Google Scholar 

  • Sandnes JM, Källqvist T, Wenner D, Gislerød HR. Combined influence of light and temperature on growth rates of Nannochloropsis oceanica: linking cellular responses to large-scale biomass production. J Appl Phycol. 2005;17:515–25.

    Article  Google Scholar 

  • Santos CA, Reis A. Microalgal symbiosis in biotechnology. Appl Microbiol Biotechnol. 2014;98:5839–46.

    Article  PubMed  CAS  Google Scholar 

  • Sayre R. Microalgae: the potential for carbon capture. Bioscience. 2010;60:722–7.

    Article  Google Scholar 

  • Schnurr PJ, Espie GS, Allen DG. Algae biofilm growth and the potential to stimulate lipid accumulation through nutrient starvation. Bioresour Technol. 2013;136:337–44.

    Article  PubMed  CAS  Google Scholar 

  • Segev E, Wyche TP, Kim KH, Petersen J, Ellebrandt C, Vlamakis H, et al. Dynamic metabolic exchange governs a marine algal-bacterial interaction. elife. 2016;5:e17473.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sepúlveda C, Acién FG, Gómez C, Jiménez-Ruíz N, Riquelme C, Molina-Grima E. Utilization of centrate for the production of the marine microalgae Nannochloropsis gaditana. Algal Res. 2015;9:107–16.

    Article  Google Scholar 

  • Silaban A, Bai R, Gutierrez-Wing MT, Negulescu II, Rusch KA. Effect of organic carbon, C:N ratio and light on the growth and lipid productivity of microalgae/cyanobacteria coculture. Eng Life Sci. 2014;14:47–56.

    Article  CAS  Google Scholar 

  • Silva HJ, Cortifas T, Ertola RJ. Effect of hydrodynamic stress on Dunaliella growth. J Chem Technol Biotechnol. 1987;40:41–9.

    Article  Google Scholar 

  • Singh M, Das KC. Low cost nutrients for algae cultivation. In: Bajpai R, Prokop A, Zappi M, editors. Algal biorefineries: volume 1: cultivation of cells and products. Dordrecht: Springer Netherlands; 2014. p. 69–82.

    Chapter  Google Scholar 

  • Su Y, Mennerich A, Urban B. Synergistic cooperation between wastewater-born algae and activated sludge for wastewater treatment: influence of algae and sludge inoculation ratios. Bioresour Technol. 2012;105:67–73.

    Article  PubMed  CAS  Google Scholar 

  • Subashchandrabose SR, Ramakrishnan B, Megharaj M, Venkateswarlu K, Naidu R. Consortia of cyanobacteria/microalgae and bacteria: biotechnological potential. Biotechnol Adv. 2011;29:896–907.

    Article  PubMed  CAS  Google Scholar 

  • Sydney EB, Novak AC, de Carvalho JC, Soccol CR. Chapter 4: Respirometric balance and carbon fixation of industrially important algae. In: Biofuels from algae. Amsterdam: Elsevier; 2014. p. 67–84.

    Chapter  Google Scholar 

  • Takache H, Christophe G, Cornet JF, Pruvost J. Experimental and theoretical assessment of maximum productivities for the microalgae Chlamydomonas reinhardtii in two different geometries of photobioreactors. Biotechnol Prog. 2010;26:431–40.

    PubMed  CAS  Google Scholar 

  • Takache H, Pruvost J, Cornet JF. Kinetic modeling of the photosynthetic growth of Chlamydomonas reinhardtii in a photobioreactor. Biotechnol Prog. 2012;28:681–92.

    Article  PubMed  CAS  Google Scholar 

  • Tarlan E, Dilek FB, Yetis U. Effectiveness of algae in the treatment of a wood-based pulp and paper industry wastewater. Bioresour Technol. 2002;84:1–5.

    Article  PubMed  CAS  Google Scholar 

  • Ugwu CU, Aoyagi H, Uchiyama H. Photobioreactors for mass cultivation of algae. Bioresour Technol. 2008;99:4021–8.

    Article  CAS  PubMed  Google Scholar 

  • Unnithan VV, Unc A, Smith GB. Mini-review: a priori considerations for bacteria–algae interactions in algal biofuel systems receiving municipal wastewaters. Algal Res. 2014;4:35–40.

    Article  Google Scholar 

  • Vasseur C, Bougaran G, Garnier M, Hamelin J, Leboulanger C, Chevanton ML, et al. Carbon conversion efficiency and population dynamics of a marine algae–bacteria consortium growing on simplified synthetic digestate: first step in a bioprocess coupling algal production and anaerobic digestion. Bioresour Technol. 2012;119:79–87.

    Article  PubMed  CAS  Google Scholar 

  • Vejrazka C, Janssen M, Streefland M, Wijffels RH. Photosynthetic efficiency of Chlamydomonas reinhardtii in flashing light. Biotechnol Bioeng. 2011;108:2905–13.

    Article  PubMed  CAS  Google Scholar 

  • Vejrazka C, Janssen M, Streefland M, Wijffels RH. Photosynthetic efficiency of Chlamydomonas reinhardtii in attenuated, flashing light. Biotechnol Bioeng. 2012;109:2567–74.

    Article  PubMed  CAS  Google Scholar 

  • Vejrazka C, Janssen M, Benvenuti G, Streefland M, Wijffels RH. Photosynthetic efficiency and oxygen evolution of Chlamydomonas reinhardtii under continuous and flashing light. Appl Microbiol Biotechnol. 2013;97:1523–32.

    Article  PubMed  CAS  Google Scholar 

  • Vonshak A, Torzillo G, Masojidek J, Boussiba S. Sub-optimal morning temperature induces photoinhibition in dense outdoor cultures of the alga Monodus subterraneus (Eustigmatophyta). Plant Cell Environ. 2001;24:1113–8.

    Article  Google Scholar 

  • Wang JK, Seibert M. Prospects for commercial production of diatoms. Biotechnol Biofuels. 2017;10:16.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Watanabe K, Takihana N, Aoyagi H, Hanada S, Watanabe Y, Ohmura N, et al. Symbiotic association in Chlorella culture. FEMS Microbiol Ecol. 2005;51:187–96.

    Article  PubMed  CAS  Google Scholar 

  • Xue F, Miao J, Zhang X, Tan T. A new strategy for lipid production by mix cultivation of Spirulina platensis and Rhodotorula glutinis. Appl Biochem Biotechnol. 2010;160:498–503.

    Article  PubMed  CAS  Google Scholar 

  • Yang J, Li X, Hu H, Zhang X, Yu Y, Chen Y. Growth and lipid accumulation properties of a freshwater microalga, Chlorella ellipsoidea YJ1, in domestic secondary effluents. Appl Energy. 2011;88:3295–9.

    Article  CAS  Google Scholar 

  • Yen H-W, Chen P-W, Chen L-J. The synergistic effects for the co-cultivation of oleaginous yeast-Rhodotorula glutinis and microalgae-Scenedesmus obliquus on the biomass and total lipids accumulation. Bioresour Technol. 2015;184:148–52.

    Article  PubMed  CAS  Google Scholar 

  • Yoo C, Jun SY, Lee JY, Ahn CY, Oh HM. Selection of microalgae for lipid production under high levels carbon dioxide. Bioresour Technol. 2010;101(Suppl 1):S71–4.

    Article  PubMed  CAS  Google Scholar 

  • Yoshimoto N, Sato T, Kondo Y. Dynamic discrete model of flashing light effect in photosynthesis of microalgae. J Appl Phycol. 2005;17:207–14.

    Article  CAS  Google Scholar 

  • Zhang J, Hu B. A novel method to harvest microalgae via co-culture of filamentous fungi to form cell pellets. Bioresour Technol. 2012;114:529–35.

    Article  PubMed  CAS  Google Scholar 

  • Zhao X, Zhou Y, Huang S, Qiu D, Schideman L, Chai X, et al. Characterization of microalgae-bacteria consortium cultured in landfill leachate for carbon fixation and lipid production. Bioresour Technol. 2014;156:322–8.

    Article  PubMed  CAS  Google Scholar 

  • Zhou W, Cheng Y, Li Y, Wan Y, Liu Y, Lin X, et al. Novel fungal pelletization-assisted technology for algae harvesting and wastewater treatment. Appl Biochem Biotechnol. 2012;167:214–28.

    Article  PubMed  CAS  Google Scholar 

  • Zonneveld C. Light-limited microalgal growth: a comparison of modelling approaches. Ecol Model. 1998;113:41–54.

    Article  Google Scholar 

Download references

Acknowledgment

This research is funded by Graduate University of Science and Technology under the grant number GUST.STS.ĐT2017-ST03.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Le, T.G., Tran, DT., Van Do, T.C., Nguyen, V.T. (2019). Design Considerations of Microalgal Culture Ponds and Photobioreactors for Wastewater Treatment and Biomass Cogeneration. In: Alam, M., Wang, Z. (eds) Microalgae Biotechnology for Development of Biofuel and Wastewater Treatment. Springer, Singapore. https://doi.org/10.1007/978-981-13-2264-8_21

Download citation

Publish with us

Policies and ethics