Skip to main content

Microalgae and Wastewater Treatment: Advantages and Disadvantages

  • Chapter
  • First Online:
Microalgae Biotechnology for Development of Biofuel and Wastewater Treatment

Abstract

Wastewater generation has concomitantly increased with the growth of world human population in the last century. The uncontrolled discharge of wastewater may result in serious social, environmental and health problems. At the same time, the use of microalgal-based systems has been widely studied for a variety of residual effluents treatment since the early 1950s. In this context, different technologies have been developed, and new strategies to cope with specific needs have been investigated worldwide. There are several advantages of microalgal-based systems compared to traditional wastewater treatment technologies, namely, (1) pollutants and pathogen decrease, (2) nutrient recovery in the form of valuable biomass, (3) energy savings and (4) CO2 emissions reduction. In spite of all these advantages, there are still many challenges to overcome before attaining the real implementation of this technology. Those challenges include (1) land requirement, (2) effect of wastewater characteristics, (3) environmental and operational condition influence and (4) biomass harvesting and valorization. This chapter will explore and discuss the main advantages and limitations of using this green technology for wastewater treatment based on our expertise and the latest insights on this topic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acien FG, Fernández-Sevilla JM, Molina-Grima E. Microalgae: the basis of making sustainability. In: Case study of innovative projects – successful real cases. 2017. https://doi.org/10.5772/67930.

    Google Scholar 

  • Adav SS, Lee DJ, Show KY, Tay JH. Aerobic granular sludge: recent advances. Biotechnol Adv. 2008;26:411–23.

    Article  PubMed  CAS  Google Scholar 

  • Alam MA, Wang Z, Yuan Z. Generation and harvesting of microalgae biomass for biofuel production. In: Prospects and challenges in algal biotechnology. Singapore: Springer; 2017. p. 89–111.

    Chapter  Google Scholar 

  • Alcántara C, Domínguez J, García D, Blanco S, Pérez R, García-Encina PA, Muñoz R. Evaluation of wastewater treatment in a novel anoxic-aerobic algal-bacterial photobioreactor with biomass recycling through carbon and nitrogen mass balances. Bioresour Technol. 2015;191:173–86.

    Article  PubMed  CAS  Google Scholar 

  • Al-Gheethi AA, Mohamed RM, Jais NM, Efaq AN, Halid AA, Wurochekke AA, Amir-Hashim MK. Influence of pathogenic bacterial activity on growth of Scenedesmus sp. and removal of nutrients from public market wastewater. J Water Health. 2017;15:741–56.

    Article  PubMed  CAS  Google Scholar 

  • Andersen CB. Understanding carbonate equilibria by measuring alkalinity in experimental and natural systems. J Geosci Educ. 2002;50:389–403.

    Article  Google Scholar 

  • Aresta M, Dibenedetto A, Barberio G. Utilization of macro-algae for enhanced CO2 fixation and biofuels production: development of a computing software for an LCA study. Fuel Process Technol. 2005;86:1679–93.

    Article  CAS  Google Scholar 

  • Azov Y, Goldman JC. Free ammonia inhibition of algal photosynthesis in intensive culture. Appl Environ Microbiol. 1982;43(4):735–9.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Barros AI, Gonçalves AL, Simões M, Pires JC. Harvesting techniques applied to microalgae: a review. Renew Sust Energ Rev. 2015;41:1489–500.

    Article  Google Scholar 

  • Benemann JR. Utilization of carbon dioxide from fossil fuel-burning power plants with biological systems. Energy Convers Manag. 1993;34:999–1004.

    Article  CAS  Google Scholar 

  • Boelee NC, Temmink H, Janssen M, Buisman CJN, Wijffels RH. Nitrogen and phosphorus removal from municipal wastewater effluent using microalgal biofilms. Water Res. 2011;45:5925–33.

    Article  PubMed  CAS  Google Scholar 

  • Brown N, Shilton A. Luxury uptake of phosphorus by microalgae in waste stabilisation ponds: current understanding and future direction. Rev Environ Sci Biotechnol. 2014;13:321–8.

    Article  CAS  Google Scholar 

  • Buck BH, Buchholz CM. The offshore-ring: a new system design for the open ocean aquaculture of macroalgae. J Appl Phycol. 2004;16:355–68.

    Article  Google Scholar 

  • Cai T, Park SY, Li Y. Nutrient recovery from wastewater streams by microalgae: status and prospects. Renew Sust Energ Rev. 2013;19:360–9.

    Article  CAS  Google Scholar 

  • Chinnasamy S, Bhatnagar A, Hunt RW, Das KC. Microalgae cultivation in a wastewater dominated by carpet mill effluents for biofuel applications. Bioresour Technol. 2010;101:3097–105.

    Article  PubMed  CAS  Google Scholar 

  • Chisti Y. Biodiesel from microalgae. Biotechnol Adv. 2007;25:294–306.

    Article  CAS  PubMed  Google Scholar 

  • Chisti Y. Biodiesel from microalgae beats bioethanol. Trends Biotechnol. 2008;26:126–31.

    Article  PubMed  CAS  Google Scholar 

  • Cho DH, Ramanan R, Heo J, Kang Z, Kim BH, Oh HM, Kim HS. Organic carbon, influent, microbial diversity and biomass in raceways ponds treating raw municipal. Bioresour Technol. 2015;191:481–7.

    Article  PubMed  CAS  Google Scholar 

  • Chojnacka K, Chojnacki A, Gorecka H. Biosorption of Cr3+, Cd2+ and Cu2+ ions by blue-green algae Spirulina sp.: kinetics, equilibrium and the mechanism of the process. Chemosphere. 2005;59:75–84.

    Article  PubMed  CAS  Google Scholar 

  • Christenson L, Sims R. Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts. Biotechnol Adv. 2011;29:686–702.

    Article  CAS  PubMed  Google Scholar 

  • Dallaire V, Lessard P, Vandenberg G, de la Noü J. Effect of algal incorporation on growth, survival and carcass composition of rainbow trout (Oncorhynchus mykiss) fry. Bioresour Technol. 2007;98(7):1433–9.

    Article  PubMed  CAS  Google Scholar 

  • De Godos I, Blanco S, García-Encina PA, Becares E, Muñoz R. Long-term operation of high rate algal ponds for the bioremediation of piggery wastewaters at high loading rates. Bioresour Technol. 2009;100:4332–9.

    Article  PubMed  CAS  Google Scholar 

  • De Godos I, Vargas VA, Guzmán HO, Soto R, García B, García PA, Muñoz R. Assessing carbon and nitrogen removal in a novel anoxic–aerobic cyanobacterial–bacterial photobioreactor configuration with enhanced biomass sedimentation. Water Res. 2014;61:77–85.

    Article  PubMed  CAS  Google Scholar 

  • De Godos I, Arbid Z, Lara E, Cano R, Muñoz R, Rogalla F. Wastewater treatment in algal systems. In: Innovative wastewater treatment and resource recovery technologies. Impacts on energy, economy and environment. London: IWA Publishing; 2017.

    Google Scholar 

  • FAO. FAOSTAT online database. 2014. Available at http://faostat.fao.org/.Accessed Mar 2018.

  • Feng Y, Li C, Zhang D. Lipid production of Chlorella vulgaris cultured in artificial wastewater medium. Bioresour Technol. 2011;102:101–5.

    Article  PubMed  CAS  Google Scholar 

  • Fortier MOP, Roberts GW, Stagg-Williams SM, Sturm BS. Determination of the life cycle climate change impacts of land use and albedo change in algal biofuel production. Algal Res. 2017;28:270–81.

    Article  Google Scholar 

  • González LE, Cañizares RO, Baena S. Efficiency of ammonia and phosphorus removal from a Colombian agroindustrial wastewater by the microalgae Chlorella vulgaris and Scenedesmus dimorphus. Bioresour Technol. 1997;60:259–62.

    Article  Google Scholar 

  • González AG, Oleg S, Pokrovsky J, Santana-Casiano M, González-Dávila M. Bioadsorption of heavy metals. In: Prospects and challenges in algal biotechnology. Singapore: Springer; 2017. p. 257–75.

    Google Scholar 

  • González-Fernández C, Riaño-Irazábal B, Molinuevo-Salces B, García-González MC. Effect of operational conditions of the degradation of organic matter and develop-ment of microalgae-bacteria consortia when treating swine slurry. Appl Microbiol Biotechnol. 2011;90:1147–53.

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Fernandez C, Sialve B, Molinuevo-Salces B. Anaerobic digestion of microalgal biomass: challenges, opportunities and research needs. Bioresour Technol. 2015;198:896–906.

    Article  PubMed  CAS  Google Scholar 

  • Gouveia L. Microalgae as a feedstock for biofuels. Springer Briefs in Microbiology. 2011. https://doi.org/10.1007/978-3-642-17997-6.

    Book  Google Scholar 

  • Guldhe A, Kumari S, Ramanna L, Ramsundar P, Singh P, Rawat I, Bux F. Prospects, recent advancements and challenges of different wastewater streams. J Environ Manag. 2017;203:299–315.

    Article  CAS  Google Scholar 

  • Handler RM, Shi R, Shonnard DR. Land use change implications for large-scale cultivation of algae feedstocks in the United States Gulf Coast. J Clean Prod. 2017;153:15–25.

    Article  Google Scholar 

  • Hernández D, Riaño B, Coca M, García-González MC. Treatment of agro-industrial wastewater using microalgae–bacteria consortium combined with anaerobic digestion of the produced biomass. Bioresour Technol. 2013;135:598–603.

    Article  PubMed  CAS  Google Scholar 

  • Hernández D, Riaño B, Coca M, García-González MC. Saccharification of carbohydrates in microalgal biomass by physical, chemical and enzymatic pre-treatments as a previous step for bioethanol production. Chem Eng J. 2015;262:939–45.

    Article  CAS  Google Scholar 

  • Hernández D, Riaño B, Coca M, Solana M, Bertucco A, García-González MC. Microalgae cultivation in high rate algal ponds using slaughterhouse wastewater for biofuel applications. Chem Eng J. 2016;285:449–58.

    Article  CAS  Google Scholar 

  • Jia H, Yuan Q. Removal of nitrogen from wastewater using microalgae and microalgae–bacteria consortia. Cogent Environ Sci. 2016;2:1275089.

    Article  CAS  Google Scholar 

  • Kraan S. Mass-cultivation of carbohydrate rich macroalgae, a possible solution for sustainable biofuel production. Mitig Adapt Strateg Glob. 2013;18:27–46.

    Article  Google Scholar 

  • Laamanen CA, Gregory MR, Scott JA. Flotation harvesting of microalgae. Renew Sust Energ Rev. 2016;58:75–86.

    Article  Google Scholar 

  • Lal R. Soil carbon sequestration impacts on global climate change and food security. Science. 2004;304:1623–7.

    Article  PubMed  CAS  Google Scholar 

  • Langholtz MH, Coleman AM, Eaton LM, Wigmosta MS, Hellwinckel CM, Brandt CC. Potential land competition between open-pond microalgae production and terrestrial dedicated feedstock supply systems in the US. Renew Energy. 2016;93:201–14.

    Article  Google Scholar 

  • Larrán García MA, Tomás-Almenar C, de Mercado E, Hernández D, García-González MC. Valorización de la biomasa algal procedente del tratamiento de purines mediante la inclusión en piensos para trucha arco iris (Oncorhynchus mykiss). In Proc. XVI National Aquaculture Congress, Zaragoza (Spain); 2017. p. 217–218.

    Google Scholar 

  • Larsdotter K. Wastewater treatment with microalgae: a literature review. Vatten. 2006;62:31–8.

    CAS  Google Scholar 

  • Lavens P, Sorgeloos P. Manual on the production and use of live food for aquaculture. Rome: Food and Agriculture Organization (FAO); 1996.

    Google Scholar 

  • Lee CS, Lee SA, Ko SR, Oh HM, Ahn CY. Effects of photoperiod on nutrient removal, biomass production, and algal-bacterial population dynamics in lab-scale photobioreactors treating municipal wastewater. Water Res. 2015;68:680–91.

    Article  PubMed  CAS  Google Scholar 

  • Mahapatra DM, Chanakya HN, Joshi NV, Ramachandra TV, Murthy GS. Algae-based biofertilizers: a biorefinery approach. In: Microorganisms for green revolution. Singapore: Springer; 2018. p. 177–96.

    Chapter  Google Scholar 

  • Markou G, Vandamme D, Muylaert K. Microalgal and cyanobacterial cultivation: the supply of nutrients. Water Res. 2014;65:186–202.

    Article  PubMed  CAS  Google Scholar 

  • Mata TM, Martins AA, Caetano NS. Microalgae for biodiesel production and other applications: a review. Renew Sust Energ Rev. 2010;14:217–32.

    Article  CAS  Google Scholar 

  • Matamoros V, Gutiérrez R, Ferrer I, García J, Bayona JM. Capability of microalgae-based wastewater treatment systems to remove emerging organic contaminants: a pilot-scale study. J Hazard Mater. 2015;288:34–42.

    Article  PubMed  CAS  Google Scholar 

  • Mendoza JL, Granados MR, Godos I, Acien FG, Molina E, Banks C, Heaven S. Fluid-dynamic characterization of real-scale raceway reactors for microalgae production. Biomass Bioenerg. 2013;54:267–75.

    Article  CAS  Google Scholar 

  • Mezrioui N, Oudra B, Oufdou K, Hassani L, Loudiki M, Darley J. Effect of microalgae growing on wastewater batch culture on Escherichia coli and Vibrio cholerae survival. Water Sci Technol. 1994;30:295–302.

    Article  Google Scholar 

  • Milledge JJ, Heaven S. A review of the harvesting of micro-algae for biofuel production. Rev Environ Sci Biotechnol. 2013;12(2):165–78.

    Article  Google Scholar 

  • Molina Grima E, Belarbi EH, Acien Fernandez FG, Robles Medina A, Chisti Y. Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv. 2003;20:491–515.

    Article  CAS  PubMed  Google Scholar 

  • Molinuevo-Salces B, García-González MC, González-Fernández C. Performance comparison of two photobioreactors configurations (open and closed to the atmosphere) treating anaerobically degraded swine slurry. Bioresour Technol. 2010;101:5144–9.

    Article  PubMed  CAS  Google Scholar 

  • Molinuevo-Salces B, Mahdy A, Ballesteros M, González-Fernández C. From piggery wastewater nutrients to biogas: microalgae biomass revalorization through anaerobic digestion. Renew Energy. 2016;96:1103–10.

    Article  CAS  Google Scholar 

  • Morrissey WA, Justus JR. Global climate change. Congressional Research Service, Library of Congress; 2000.

    Google Scholar 

  • Mulbry W, Kondrad S, Buyer J. Treatment of dairy and swine manure effluents using freshwater algae: fatty acid content and composition of algal biomass at different manure loading rates. J Appl Phycol. 2008;20:1079–85.

    Article  Google Scholar 

  • Muñoz R, Guieysse B. Algal-bacterial processes for the treatment of hazardous contaminants: a review. Water Res. 2006;40:2799–815.

    Article  PubMed  CAS  Google Scholar 

  • Muylaert K, Bastiaens L, Vandamme D, Gouveia L. Harvesting of microalgae: overview of process options and their strengths and drawbacks. In Microalgae-based biofuels and bioproducts; 2018. p. 113–132.

    Chapter  Google Scholar 

  • Olguín EJ, Castillo SO, Mendoza A, Tapia K, González-Portela RE, Hernández-Landa VJ. Dual purpose system that treats anaerobic effluents from pig waste and produce Neochloris oleoabundans as lipid rich biomass. New Biotechnol. 2015;32:387–95.

    Article  CAS  Google Scholar 

  • Oswald WJ. Micro-algae and wastewater treatment. In: Borowitzka MA, Borowitzka LJ, editors. Micro-algal biotechnology. Cambridge, UK: Cambridge University Press; 1988. p. 305–28.

    Google Scholar 

  • Ozturk S, Aslim B, Suludere Z, Tan S. Metal removal of cyanobacterial exopolysaccharides by uronic acid content and monosaccharide composition. Carbohydr Polym. 2014;101:265–71.

    Article  PubMed  CAS  Google Scholar 

  • Paniagua-Michel J. Wastewater treatment using phototrophic–heterotrophic biofilms and microbial mats. In: Prospects and challenges in algal biotechnology. Singapore: Springer; 2017. p. 257–75.

    Chapter  Google Scholar 

  • Park JBK, Craggs RJ. Wastewater treatment and algal production in high rate algal ponds with carbon dioxide addition. Water Sci Technol. 2010;61:633–9.

    Article  PubMed  CAS  Google Scholar 

  • Park JBK, Craggs RJ, Shilton AN. Wastewater treatment high rate algal ponds for biofuel production. Bioresour Technol. 2011;102:35–42.

    Article  PubMed  CAS  Google Scholar 

  • Peng K, Li J, Jiao K, Zeng X, Lin L, Pan S, Danquah MK. The bioeconomy of microalgal biofuels. In: Energy from microalgae. Cham: Springer; 2018. p. 157–69.

    Chapter  Google Scholar 

  • Pereira M, Bartolome MC, Sánchez-Fortum SS. Bioadsorption and bioaccumulation of chromium trivalent in Cr (III) tolerant microalgae: a mechanism for chromium resistance. Chemosphere. 2013;93:1057–63.

    Article  PubMed  CAS  Google Scholar 

  • Posadas E, García-Encina PA, Soltau A, Domínguez A, Díaz I, Muñoz R. Carbon and nutrient removal from centrates and domestic wastewater using algal–bacterial biofilm bioreactors. Bioresour Technol. 2013;139:50–8.

    Article  PubMed  CAS  Google Scholar 

  • Posadas E, Bochon S, Coca M, García-González MC, García-Encina PA, Muñoz R. Microalgae-based agro-industrial wastewater treatment: a preliminary screening of biodegradability. J Appl Phycol. 2014;26:2335–45.

    Article  CAS  Google Scholar 

  • Posadas E, Morales MM, Gómez C, Acién FG, Muñoz R. Influence of pH and CO2 source on the performance of microalgae-based secondary domestic wastewater treatment in outdoors pilot raceways. Chem Eng J. 2015;265:239–48.

    Article  CAS  Google Scholar 

  • Posadas E, Alcántara C, García-Encina PA, Gouveia L, Guieysse B, Norvill Z, Acién FG, Markou G, Congestri R, Koreiviene J, Muñoz R. Microalgae cultivation in wastewater. In Microalgae-based biofuels and bioproducts, from feedstock cultivation to end-products; 2018 p. 67–91. ISBN:978–0–08-101023-5.

    Chapter  Google Scholar 

  • Powell N, Shilton A, Chisti Y, Pratt S. Towards a luxury uptake process via microalgae-defining the polyphosphate dynamics. Water Res. 2009;43:4207–13.

    Article  PubMed  CAS  Google Scholar 

  • Riaño B, Molinuevo B, García-González MC. Treatment of fish processing wastewater with microalgae-containing microbiota. Bioresour Technol. 2011;102:10829–33.

    Article  PubMed  CAS  Google Scholar 

  • Riaño B, Hernández D, García-González MC. Microalgal-based systems for wastewater treatment: effect of applied organic and nutrient loading rate on biomass composition. Ecol Eng. 2012;49:112–7.

    Article  Google Scholar 

  • Richmond A. Handbook of microalgal culture: biotechnology and applied phycology. Hoboken: Wiley; 2008.

    Google Scholar 

  • Rittmann BE. Opportunities for renewable bioenergy using microorganisms. Biotechnol Bioeng. 2008;100:203–12.

    Article  PubMed  CAS  Google Scholar 

  • Ruiz-Marin A, Mendoza-Espinosa LG, Stephenson T. Growth and nutrient removal in free and immobilized green algae in batch and semi-continuous cultures treating real wastewater. Bioresour Technol. 2010;101:58–64.

    Article  PubMed  CAS  Google Scholar 

  • Searchinger T, Heimlich R, Houghton RA, Dong F, Elobeid A, Fabiosa J, Yu TH. Use of US croplands for biofuels increases greenhouse gases through emissions from land-use change. Science. 2008;319(5867):1238–40.

    Article  PubMed  CAS  Google Scholar 

  • Slade R, Bauen A. Micro-algae cultivation for biofuels: cost, energy balance, environmental impacts and future prospects. Biomass Bioenerg. 2013;53:29–38.

    Article  Google Scholar 

  • Stephens E, Ross IL, King Z, Mussgnug JH, Kruse O, Posten C, Hankamer B. An economic and technical evaluation of microalgal biofuels. Nat Biotechnol. 2010;28:126.

    Article  PubMed  CAS  Google Scholar 

  • Subashchandrabose SR, Ramakrishnan B, Megharaj M, Venkateswarlu K, Naidu R. Consortia of cyanobacteria/microalgae and bacteria: biotechnological potential. Biotechnol Adv. 2011;29:896–907.

    Article  PubMed  CAS  Google Scholar 

  • Sutherland DL, Turnbull MH, Craggs RJ. Increased pond depth improves algal productivity and nutrient removal in wastewater treatment high rate algal ponds. Water Res. 2014;53:271–81.

    Article  PubMed  CAS  Google Scholar 

  • Sutherland DL, Howard-Willians C, Turnbull MH, Broady PA, Craggs RJ. Enhancing microalgal photosynthesis and productivity in wastewater treatment high rate algal ponds for biofuel production. Bioresour Technol. 2015;184:222–9.

    Article  PubMed  CAS  Google Scholar 

  • Tomás-Almenar C, Larrán-García AM, de Mercado E, Sanz-Calvo MA, Hernández D, García-González MC. Microalgae as a protein recovery system for feed rainbow trout. In Proc. 47th Conference of the West European Fish Technologists Association, Dublin (Ireland); 2017. p. 130.

    Google Scholar 

  • Tomás-Almenar C, Larrán-García AM, de Mercado E, Sanz-Calvo MA, Hernández D, García-González MC. Scenedesmus almeriensis from an integrated system waste-nutrient, as sustainable protein source for feed to rainbow trout (Oncorhynchus mykiss). Aquaculture. 2018;497:422–30.

    Article  CAS  Google Scholar 

  • Toyoshima M, Aikawa S, Yamagishi T, Kondo A, Kawai H. A pilot-scale floating closed culture system for the multicellular cyanobacterium Arthrospira platensis NIES-39. J Appl Phycol. 2015;27(6):2191–202.

    Article  PubMed  CAS  Google Scholar 

  • Tredici M. Bioreactors, photo. In: Flickinger MC, Drew SW, editors. Encyclopedia of bioprocess technology: fermentation, Biocatal. Biosep. New York: Wiley; 1999.

    Google Scholar 

  • Umamaheswari J, Shanthakumar S. Efficacy of microalgae for industrial wastewater treatment: a review on operating conditions, treatment efficiency and biomass productivity. Rev Environ Sci Biotechnol. 2016;15:265–84.

    Article  CAS  Google Scholar 

  • Vandamme D, Foubert I, Muylaert K. Flocculation as a low-cost method for harvesting microalgae for bulk biomass production. Trends Biotechnol. 2013;31:233–9.

    Article  PubMed  CAS  Google Scholar 

  • Wang L, Li Y, Chen P, Min M, Chen Y, Zhu J, Ruan RR. Anaerobic digested dairy manure as a nutrient supplement for cultivation of oil-rich green microalgae Chlorella sp. Bioresour Technol. 2010;101:2623–8.

    Article  PubMed  CAS  Google Scholar 

  • Wilkie AC, Mulbry WW. Recovery of dairy manure nutrients by benthic freshwater algae. Bioresour Technol. 2002;84:81–91.

    Article  PubMed  CAS  Google Scholar 

  • Zeraatkar AH, Ahmadzadeh H, Talebi AF, Moheimani MR, McHenry MP. Potential use of algae for heavy metal bioremediation, a critical review. J Environ Manag. 2016;181:817–31.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been supported by Ministerio de Ciencia, Innovación y Universidades - Gobierno de España (grant number CTQ2017-84006-C3-1-R) and cofinanced by EU-FEDER.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beatriz Molinuevo-Salces .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Molinuevo-Salces, B., Riaño, B., Hernández, D., Cruz García-González, M. (2019). Microalgae and Wastewater Treatment: Advantages and Disadvantages. In: Alam, M., Wang, Z. (eds) Microalgae Biotechnology for Development of Biofuel and Wastewater Treatment. Springer, Singapore. https://doi.org/10.1007/978-981-13-2264-8_20

Download citation

Publish with us

Policies and ethics