Skip to main content

Advancement of Bio-hydrogen Production from Microalgae

  • Chapter
  • First Online:

Abstract

In the twenty-first century, ensuring energy security is a key challenge to economic and political stability of the globe. Biological hydrogen production from microalgae is the promising alternative source for potential renewable energy which only releases water vapor as by-product without polluting environment as it does by fossil fuel, emitting CO2 when burnt. Microalgae can generate hydrogen by bio-photolysis or photo-fermentation. Two enzymes, viz., hydrogenase and nitrogenase, are responsible for biological hydrogen production process in metabolic pathway of microalgae. Though successful research has been conducted at laboratory scale producing hydrogen from microalgae, low yield has been recognized as challenge due to light capturing efficiency, oxygen sensitivity of enzyme, CO2 fixation efficiency, etc. during its bulk production for commercialization. In biological H2 production, cost reduction in algae culture and downstream process is required to make it economically feasible. Therefore present research emphasizes overcoming key challenges for scaling up biomass and H2 production through genetic and low-cost designed photo-bioreactors. This chapter depicted the principles of photobiological hydrogen production in microalgae along with various recent approaches and emerging strategies to mitigate the present limitations for hydrogen production.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adams MW. The structure and mechanism of iron-hydrogenases. Biochim Biophys Acta. 1990;1020:115–45.

    Article  CAS  PubMed  Google Scholar 

  • Adams MW, Hall DO. Purification of the membrane-bound hydrogenase of Escherichia coli. J Biol Chem. 1979;183:11–22.

    CAS  Google Scholar 

  • Akkerman I, Janssen M, Rocha J, Wijffels RH. Photobiological hydrogen production: photochemical efficiency and bioreactor design. Int J Hydrog Energy. 2002;27:1195–208.

    Article  CAS  Google Scholar 

  • Alam MA, Wang ZM, Yuan ZH. Generation and harvesting of microalgae biomass for biofuel production. In: Tripathi BN, Kumar D, editors. Prospects and challenges in algal biotechnology. Singapore: Springer; 2017. p. 89–111.

    Google Scholar 

  • Antal TK, Volgusheva AA, Kukarskih GP, Krendeleva TE, Rubin AB. Relationships between H2 photoproduction and different electron transport pathways in sulfur-deprived Chlamydomonas reinhardtii. Int J Hydrog Energy. 2009;34:9087–94.

    Article  CAS  Google Scholar 

  • Aubert-Jousset E, Cano M, Guedeney G, Richaud P, Cournac L. Role of HoxE subunit in Synechocystis PCC 6803 hydrogenase. FEBS J. 2011;278:4035–43.

    Article  CAS  PubMed  Google Scholar 

  • Azwar MY, Hussain MA, Abdul-Wahab AK. Development of bio-hydrogen production by photo biological: fermentation and electrochemical processes: a review. Renew Sust Energ Rev. 2014;31:158–73.

    Article  CAS  Google Scholar 

  • Baebprasert W, Jantaro S, Khetkorn W, Lindblad P, Incharoensakdi A. Increased H2 production in the cyanobacterium Synechocystis sp. strain PCC 6803 by redirecting the electron supply via genetic engineering of the nitrate assimilation pathway. Metab Eng. 2011;13:610–6.

    Article  CAS  PubMed  Google Scholar 

  • Baltz A, Kieu-Van D, Beyly A, Auroy P, Richaud P, Cournac L, Peltier G. Plastidial expression of type II NAD(P)H dehydrogenase increases the reducing state of plastoquinones and hydrogen photoproduction rate by the indirect pathway in Chlamydomonas reinhardtii. Plant Physiol. 2014;165:1344–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beckmann J, Lehr F, Finazzi G, Hankamer B, Posten C, Wobbe L, Kruse O. Improvement of light to biomass conversion by deregulation of light-harvesting protein translation in Chlamydomonas reinhardtii. J Biotechnol. 2009;142:70–7.

    Article  CAS  PubMed  Google Scholar 

  • Behera S, Singh R, Arora R, Sharma NK, Shukla M, Kumar S. Scope of algae as third generation biofuels Frontiers in bioengineering and biotechnology. Mar Biotechnol. 2015;90(2):1–13.

    Google Scholar 

  • Ben_cina M. Illumination of the spatial order of intracellular pH by genetically encoded pH-sensitive sensors. Sensors. 2013;13:16736–58.

    Article  CAS  Google Scholar 

  • Benemann JR, Berenson JA, Kaplan NO, Kamen MD. Hydrogen evolution by a chloroplast-ferredoxin-hydrogenase system. Proc Natl Acad Sci. 1973;70:2317–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berggren G, Adamska A, Lambertz C, Simmons TR, Esselborn J, Atta M, Gambarelli S, et al. Biomimetic assembly and activation of [FeFe]- hydrogenases. Nature. 2013;499:66–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bimbo N, Ting VP, Sharpe JE, Mays TJ. Analysis of optimal conditions for adsorptive hydrogen storage in microporous solids. Colloids Surf A Physicochem Eng Asp. 2013;437:113–9.

    Article  CAS  Google Scholar 

  • Blankenship RE, Chen M. Spectral expansion and antenna reduction can enhance photosynthesis for energy production. Curr Opin Chem Biol. 2013;17:457–61.

    Article  CAS  PubMed  Google Scholar 

  • Blankenship RE, Tiede DM, Barber J, Brudvig GW, Fleming G, Ghirardi M, Gunner MR, et al. Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement. Science. 2011;332:805–9.

    Article  CAS  PubMed  Google Scholar 

  • Bleijlevens B, Buhrke T, Linden EVD, Friedrich B, Albracht SP. The auxiliary protein HypX provides oxygen tolerance to the soluble [NiFe]- hydrogenase of Ralstonia eutropha H16 by way of a cyanide ligand to nickel. J Biol Chem. 2004;279:46686–91.

    Article  CAS  PubMed  Google Scholar 

  • Bothe H, Schmitz O, Yates MG, Newton WE. Nitrogen fixation and hydrogen metabolism in cyanobacteria. Microbiol Mol Biol Rev. 2010;74:529–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • BP. Statistical review of world energy 2013. 2013. http://www.bp.com/content/dam/bp/pdf/statistical-review/

  • Burgess SJ, Tamburic B, Zemichael F, Hellgardt K, Nixon PJ. Solar-driven hydrogen production in green algae. In: Laskin AI, Sariaslani S, Gadd GM, editors. Advances in applied microbiology, vol. 75. Waltham: Academic; 2011. p. 71–110.

    Chapter  Google Scholar 

  • Carrieri D, Wawrousek K, Eckert C, Yu J, Maness PC. The role of the bi-directional hydrogenase in cyanobacteria. Bioresour Technol. 2011;102:8368–77.

    Article  CAS  PubMed  Google Scholar 

  • Chang FY, Lin CY. Bio-hydrogen production using an up-flow anaerobic sludge blanket reactor. Int J Hydrog Energy. 2004;29:33–9.

    Article  CAS  Google Scholar 

  • Chen HC, Newton AJ, Melis A. Role of SulP, a nuclear-encoded chloroplast sulfate permease, in sulfate transport and H2 evolution in Chlamydomonas reinhardtii. Photosynth Res. 2005;84:289–96.

    Article  CAS  PubMed  Google Scholar 

  • Chien LF, Kuo TT, Liu BH, Lin HD, Feng TY, Huang CC. Solar-to-bioH2 production enhanced by homologous overexpression of hydrogenase in green alga Chlorella sp. DT. Int J Hydrog Energy. 2012;37:17738–48.

    Article  CAS  Google Scholar 

  • Cho SW, Kim S, Kim JM, Kim J-S. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat Biotechnol. 2013;31:230–2.

    Article  CAS  PubMed  Google Scholar 

  • Chochois V, Dauvillee D, Beyly A, Tolleter D, Cuine S, Timpano H, Ball S, et al. Hydrogen production in Chlamydomonas: photosystem II dependent and -independent pathways differ in their requirement for starch metabolism. Plant Physiol. 2009;151:631–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chu S, Majumdar A. Opportunities and challenges for a sustainable energy future. Nature. 2012;488:294–303.

    Article  CAS  PubMed  Google Scholar 

  • Cohen I, Knopf JA, Irihimovitch V, Shapira M. A proposed mechanism for the inhibitory effects of oxidative stress on rubisco assembly and its subunit expression. Plant Physiol. 2005;137:738–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D’Adamo S, Jinkerson RE, Boyd ES, Brown SL, Baxter BK, Peters JW, Posewitz MC. Evolutionary and biotechnological implications of robust hydrogenase activity in halophilic strains of Tetraselmis. PLoS One. 2014;9:e85812.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Das D, Veziroglu TN. Advances in biological hydrogen production processes. Int J Hydrog Energy. 2008;33:6046–57.

    Article  CAS  Google Scholar 

  • Das D, Khanna N, Dasgupta CN. Biohydrogen production: fundamentals and technology advances. Boca Raton: CRC Press; 2014.

    Book  Google Scholar 

  • de Mooij T, Janssen M, Cerezo-Chinarro O, Mussgnug J, Kruse O, Ballottari M, Bassi R, et al. Antenna size reduction as a strategy to increase biomass productivity: a great potential not yet realized. J Appl Phycol. 2015;27:1063–77.

    Article  CAS  Google Scholar 

  • Debabrata D, Veziroglu TN. Hydrogen production by biological processes: a survey of literature. Int J Hydrog Energy. 2001;26:13–28.

    Article  Google Scholar 

  • Debuchy R, Purton S, Rochaix JD. The argininosuccinate lyase gene of Chlamydomonas reinhardtii: an important tool for nuclear transformation and for correlating the genetic and molecular maps of the ARG7 locus. EMBO J. 1989;8:2803–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Demaurex N. pH homeostasis of cellular organelles. Physiology. 2002;17:1–5.

    Article  CAS  Google Scholar 

  • Dementin S, Leroux F, Cournac L, de lacey AL, Volbeda A, Leger C, Burlat B, et al. Introduction of methionines in the gas channel makes NiFe hydrogenase aero-tolerant. J Am Chem Soc. 2009;131:10156–64.

    Article  CAS  PubMed  Google Scholar 

  • Department of Chemistry, University of York, UK. The essential chemical industry: chemical reactors. http://www.essentialchemicalindustry.org/processes/chemical-reactors.html

  • Ding J, Wang X, Zhou XF, Renu NQ, Guo WQ. CFD optimization of continuous stirred-tank (CSTR) reactor for biohydrogen production. Bioresour Technol. 2010;101(18):7005–13.

    Article  CAS  Google Scholar 

  • Doebbe A, Rupprecht J, Beckmann J, Mussgnug JH, Hallmann A, Hankamer B, Krus O. Functional integration of the HUP1 hexose symporter gene into the genome of C. reinhardtii: impacts on biological H2 production. J Biotechnol. 2007;131:27–33.

    Article  CAS  PubMed  Google Scholar 

  • Doenitz WZ, Dietrich EE, Streicher R. Electrochemical high technology for hydrogen production or direct electricity generation. Int J Hydrog Energy. 1988;13:283–7.

    Article  CAS  Google Scholar 

  • English CM, Eckert C, Brown K, Seibert M, King PW. Recombinant and in vitro expression systems for hydrogenases: new frontiers in basic and applied studies for biological and synthetic H2 production. Dalton Trans. 2009;45:9970–8.

    Article  Google Scholar 

  • Eroglu E, Melis A. Photobiological hydrogen production: recent advances and state of the art. Bioresour Technol. 2011;102:8403–13.

    Article  CAS  PubMed  Google Scholar 

  • Eroglu E, Melis A. Microalgal hydrogen production research. Int J Hydrog Energy. 2016;41:12772–98.

    Article  CAS  Google Scholar 

  • Esper B, Badura A, Rögner M. Photosynthesis as a power supply for (bio-) hydrogen production. Trends Plant Sci. 2006;11:543–9.

    Article  CAS  PubMed  Google Scholar 

  • Esselborn J, Lambertz C, Adamska-Venkatesh A, Simmons T, Berggren G, Noth J, Siebel J, et al. Spontaneous activation of [FeFe]- hydrogenases by an inorganic [2Fe] active site mimic. Nat Chem Biol. 2013;9:607–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evens TJ, Chapman DJ, Robbins RA, D’Asaro EA. An analytical pat-plate photobioreactor with a spectrally attenuated light source for the incubation of phytoplankton under dynamic light regimes. Hydrobiologia. 2000;434:55–62.

    Article  Google Scholar 

  • Fang HHP, Liu H. Effect of pH on hydrogen production from glucose by a mixed culture. Bioresour Technol. 2002;82:87–93.

    Article  CAS  PubMed  Google Scholar 

  • Flynn T, Ghirardi ML, Seibert M. Accumulation of O2-tolerant phenotypes in H2-producing strains of Chlamydomonas reinhardtii by sequential applications of chemical mutagenesis and selection. Int J Hydrog Energy. 2002;27:1421–30.

    Article  CAS  Google Scholar 

  • Fouchard S, Hemschemeier A, Caruana A, Pruvost K, Legrand J, Happe T, Peltier G, et al. Autotrophic and mixotrophic hydrogen photoproduction in sulfur-deprived Chlamydomonas cells. Appl Environ Microbiol. 2005;71:6199–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frey M. Hydrogenases: hydrogen-activating enzymes. ChemBioChem. 2002;3:153–60.

    Article  CAS  PubMed  Google Scholar 

  • Fuel Cell and Hydrogen Energy Association (FCHEA). International developments. 2014. http://ftp.fchea.org/index.php?id=25. Accessed 29 Oct 2015.

  • Gaffron H. Reduction of CO2 with H2 in green plants. Nature. 1939;143:204–5.

    Article  CAS  Google Scholar 

  • Gaffron H, Rubin J. Fermentative and photochemical production of hydrogen in algae. J Gen Physiol. 1942;26:219–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao H, Wright DA, Li T, Wang Y, Horken K, Weeks DP, Yang B. TALE activation of endogenous genes in Chlamydomonas reinhardtii. Algal Res. 2014;1:52–60.

    Article  Google Scholar 

  • Ghirardi ML, Zhang L, Lee JW, Flynn T, Seibert M, et al. Microalgae: a green source of renewable H(2). Trends Biotechnol. 2000;18:506–11.

    Article  CAS  PubMed  Google Scholar 

  • Ghirardi ML, King PW, Mulder DW, Eckert C, Dubini A, Maness PC, Yu J. Hydrogen production by water biophotolysis. In: Zannoni D, De Philippis R, editors. Microbial bio-energy: hydrogen production. Dordrecht: Springer; 2014. p. 101–35.

    Chapter  Google Scholar 

  • Giannelli L, Torzillo G. Hydrogen production with the microalga Chlamydomonas reinhardtii grown in a compact tubular photobioreactor immersed in a scattering light nanoparticle suspension. Int J Hydrog Energy. 2012;37:16951–61.

    Article  CAS  Google Scholar 

  • Ginkel SV, Logan BE. Inhibition of bio-hydrogen production by un-dissociated acetic and butyric acids. Environ Sci Technol. 2005;39:9351–6.

    Article  PubMed  CAS  Google Scholar 

  • Global Carbon Project (GCP). Global carbon atlas. 2013. http:// www.globalcarbonatlas.org/?q=en/emissions. Accessed 29 Oct 2015.

    Google Scholar 

  • Godaux D, Emoncls Alt B, Berne N, Ghysels B, Alric J, Remacle C, Cardol P. A novel screening method for hydrogenase-deficient mutants in Chlamydomonas reinhardtii based on in vivo chlorophyll fluorescence and photosystem II quantum yield. Int J Hydrog Energy. 2013;38:1826–36.

    Article  CAS  Google Scholar 

  • Government of Japan (GoJ). The 4th strategic energy plan of Japan – provisional translation; 2014.

    Google Scholar 

  • Gupta SK, Kumari S, Reddy K, Bux F. Trends in biohydrogen production: major challenges and state-of-the-art developments. Environ Technol. 2013;34:1653–70.

    Article  PubMed  CAS  Google Scholar 

  • Gutekunst K, Chen X, Schreiber K, Kaspar U, Makam S, Appel J. The bi-directional NiFe-hydrogenase in Synechocystis sp. PCC 6803 is reduced by flavodoxin and ferredoxin and is essential under mixotrophic, nitrate-limiting conditions. J Biol Chem. 2014;289:1930–7.

    Article  CAS  PubMed  Google Scholar 

  • Hallen beck PC, Ghosh D. Advances in fermentative bio-hydrogen production: the way forward. Trends Biotechnol. 2009;27(5):287–97.

    Article  CAS  Google Scholar 

  • Hallenbeck PC, Benemann JR. Biological hydrogen production; fundamentals and limiting processes. Int J Hydrog Energy. 2002;27:1185–93.

    Article  CAS  Google Scholar 

  • Hansel A, Lindblad P. Towards optimization of cyanobacteria as biotechnologically relevant producers of molecular hydrogen. Appl Microbiol Biotechnol. 1998;50:153–60.

    Article  CAS  Google Scholar 

  • Happe T, Mosler B, Naber JD. Induction, localization and metal content of hydrogenase in the green alga Chlamydomonas reinhardtii. Eur J Biochem. 1994;222:769–74.

    Article  CAS  PubMed  Google Scholar 

  • Hemschemeier A, Happe T. Alternative photosynthetic electron transport pathways during anaerobiosis in the green alga Chlamydomonas reinhardtii. Biochim Biophys Acta. 2011;1807:919–26.

    Article  CAS  PubMed  Google Scholar 

  • Holladay JD, Hu J, King DL, Wang Y. An overview of hydrogen production technologies. Catal Today. 2009;139:244–60.

    Article  CAS  Google Scholar 

  • Hruzewicz-Kołodziejczyk A, Ting VP, Bimbo N, Mays TJ. Improving comparability of hydrogen storage capacities of nanoporous materials. Int J Hydrog Energy. 2012;37:2728–36.

    Article  CAS  Google Scholar 

  • https://www.lenntech.com/processes/submerged-mbr.htm

    Google Scholar 

  • Huesemann MH, Hausmann TS, Carter BM, Gerschler JJ, Benemann JR. Hydrogen generation through indirect biophotolysis in batch cultures of the non-heterocystous nitrogen-fixing cyanobacterium Plectonema boryanum. Appl Biochem Biotechnol. 2010;162:208–20.

    Article  CAS  PubMed  Google Scholar 

  • Hwang JH, Kim HC, Choi JA, Abou-Shanab RAI, Dempsey BA, Regan JM, Kim JR, et al. Photoautotrophic hydrogen production by eukaryotic microalgae under aerobic conditions. Nat Commun. 2014;5:3234.

    Article  PubMed  CAS  Google Scholar 

  • Intergovernmental panel on climate change (IPCC). Shares of energy sources in total global primary energy supply in 2000 (p. 6). Special Report Renewable Energy Sources (SRREN) – Summary for Policy Makers; 2011.

  • International Energy Agency (IEA). World energy outlook 2014. 2014. http://www.worldenergyoutlook.org/weo2014/. Accessed 08 Dec 2015.

  • Jackson DD, Ellms JW. On odors and tastes of surface waters with special reference to Anabaena, a microscopic organism found in certain water supplies of Massachusetts. Rep Mass State Board Health. 1896;20:410–20.

    Google Scholar 

  • Jiang W, Brueggeman AJ, Horken KM, Plucinak TM, Weeks DP. Successful transient expression of Cas9 and single guide RNA genes in Chlamydomonas reinhardtii. Eukaryot Cell. 2014;13:1465–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kanai T, Imanaka H, Nakajima A, Uwamori K, Omori Y, Fukui T, Atomi H, Imanaka T. Continuous hydrogen production by the hyper thermophilic archaeon: Thermococcus kodakaraensis KOD1. J Biotechnol. 2005;116:271–82.

    Article  CAS  PubMed  Google Scholar 

  • Khanna N, Lindblad P. Cyanobacterial hydrogenases and hydrogen metabolism revisited: recent progress and future prospects. Int J Mol Sci. 2015;16:10537–61. https://doi.org/10.3390/ijms160510537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khetkorn W, Lindblad P, Incharoensakdi A. Inactivation of uptake hydrogenase leads to enhanced and sustained hydrogen production with high nitrogenase activity under high light exposure in the cyanobacterium Anabaena siamensis TISTR 8012. J Biol Eng. 2012a;6:19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khetkorn W, Baebprasert W, Lindblad P, Incharoensakdi A. Redirecting the electron flow towards the nitrogenase and bidirectional Hox-hydrogenase by using specific inhibitors results in enhanced H2 production in the cyanobacterium Anabaena siamensis TISTR 8012. Bioresour Technol. 2012b;118:265–71.

    Article  CAS  PubMed  Google Scholar 

  • Khetkorn W, Khanna N, Incharoensakdi A, Lindblad P. Metabolic and genetic engineering of cyanobacteria for enhanced hydrogen production. Biofuels. 2013;4:535–61.

    Article  CAS  Google Scholar 

  • Khetkorn W, Rastogi RP, Incharoeneskdi A, lindbled P, Madamuar D, Pandey A, Larroche C. Microalgal hydrogen production – a review. Bioresour Technol. 2017;243:1194–206.

    Article  CAS  PubMed  Google Scholar 

  • Kim DH, Kim MS. Hydrogenases for biological hydrogen production. Bioresour Technol. 2011;102:8423–31.

    Article  CAS  PubMed  Google Scholar 

  • Kindle KL, Schnell RA, Fernandez E, Lefebvre PA. Stable nuclear transformation of Chlamydomonas using the Chlamydomonas gene for nitrate reductase. J Cell Biol. 1989;109:2589–601.

    Article  CAS  PubMed  Google Scholar 

  • Kosourov SN, Seibert M. Hydrogen photo production by nutrient-deprived Chlamydomonas reinhardtii cells immobilized within thin alginate films under aerobic and anaerobic conditions. Biotechnol Bioeng. 2009;102:50–8.

    Article  CAS  PubMed  Google Scholar 

  • Kosourov S, Tsygankov A, Seibert M, Ghirardi ML, et al. Sustained hydrogen photoproduction by Chlamydomonas reinhardtii: Effects of culture parameters. Biotechnol Bioeng. 2002;78:731–40.

    Article  CAS  PubMed  Google Scholar 

  • Kosourov S, Makarova V, Fedorov AS, Tsygankov A, Seibert M, et al. The effect of sulfur re-addition on H2 photo production by sulfur-deprived green algae. Photosynth Res. 2005;85:295–305.

    Article  CAS  PubMed  Google Scholar 

  • Kosourov SN, Batyrova K, Petushkova E, Tsygankov A, Ghirardi M, Seibert M. Maximizing the hydrogen photo production yields in Chlamydomonas reinhardtii cultures: the effect of the H2 partial pressure. Int J Hydrog Energy. 2012;37:8850–8.

    Article  CAS  Google Scholar 

  • Kroumov AD, Scheufele FB, Trigueros DEG, Modenes AN, Zaharieva M, Najdenski H. Modeling and technoeconomic analysis of algae for bioenergy and co-products. In: Rastogi RP, Madamwar D, Pandey A, editors. Algal green chemistry: recent progress in biotechnology. Amsterdam: Elsevier; 2017. p. 201–41.

    Chapter  Google Scholar 

  • Kruse O, Rupprecht J, Bader KP, Thomas-Hall S, Schenk PM, Finazzi G, Hankamer B. Improved photobiological H2 production in engineered green algal cells. J Biol Chem. 2005;280:34170–7.

    Article  CAS  PubMed  Google Scholar 

  • Kumar K, Das D. CO2 sequestration and hydrogen production using cyanobacteria and green algae. In: Reza R, editor. Natural and artificial photosynthesis. Hoboken: Wiley; 2013. p. 173–215.

    Chapter  Google Scholar 

  • Kyazze G, Perez NM, Dinsdale R, Premier GC, Hawkes FR, Guwy AJ, Hawkes DL. Influence of substrate concentration on the stability and yield of continuous biohydrogen production. Biotechnol Bioeng. 2006;93:971–9.

    Article  CAS  PubMed  Google Scholar 

  • Laurinavichene TV, Fedorov AS, Ghirardi ML, Seibert M, Tsygankov AA. Demonstration of sustained hydrogen photoproduction by immobilized, sulfur deprived Chlamydomonas reinhardtii cells. Int J Hydrog Energy. 2006;31:659–67.

    Article  CAS  Google Scholar 

  • Laurinavichene TV, Kosourov SN, Ghirardi ML, Michael Seibert Anatoly A. Prolongation of H2 photo production by immobilized, sulfur-limited Chlamydomonas reinhardtii cultures. J Biotechnol. 2008;134:275–7.

    CAS  PubMed  Google Scholar 

  • Lee J. Designer transgenic algae for photobiological production of hydrogen from water. In: Lee JW, editor. Advanced biofuels and bioproducts. New York: Springer; 2013. p. 371–404.

    Chapter  Google Scholar 

  • Lee JW, Greenbaum E. A new oxygen sensitivity and its potential application in photosynthetic H2 production. Appl Biochem Biotechnol. 2003;105:303–13.

    Article  PubMed  Google Scholar 

  • Lin CY, Jo CH. Hydrogen production from sucrose using an anaerobic sequencing batch reactor process. J Chem Technol Biotechnol. 2003;78:678–84.

    Article  CAS  Google Scholar 

  • Lin CY, Lay CH. Effects of carbonate and phosphate concentrations on hydrogen production using anaerobic sewage sludge micro flora. Int J Hydrog Energy. 2004a;29:275–81.

    Article  CAS  Google Scholar 

  • Lin CY, Lay CH. A nutrient formulation for fermentative hydrogen production using anaerobic sewage sludge micro flora. Int J Hydrog Energy. 2004b;30:285–92.

    Article  CAS  Google Scholar 

  • Lindblad P, Christensson K, Lindberg P, Fedorov A, Pinto F, Tsygankov A. Photoproduction of H2 by wild type Anabaena PCC 7120 and a hydrogen uptake deficient mutant: from laboratory experiments to outdoor culture. Int J Hydrog Energy. 2002;27:1271–81.

    Article  CAS  Google Scholar 

  • Lo YC, Bai MD, Chen WM, Chang JS. Cellulosic hydrogen production with a sequencing bacterial hydrolysis and dark fermentation strategy. Bioresour Technol. 2008;99:8299–303.

    Article  CAS  PubMed  Google Scholar 

  • Lo YC, Bai MD, Chen WM, Lee KS, Chang JS. Biohydrogen production from cellulosic hydrolysate produced via temperature-shift enhanced bacterial cellulose hydrolysis. Bioresour Technol. 2009;100:5802–7.

    Article  CAS  PubMed  Google Scholar 

  • Long H, King PW, Ghirardi ML, Kim K. Hydrogenase/Ferredoxin charge-transfer complexes: effect of hydrogenase mutations on the complex association. J Phys Chem A. 2009;113:4060–7.

    Article  CAS  PubMed  Google Scholar 

  • Lubner CE, Applegate AM, Kn€orzer P, Ganago A, Bryant DA, Happe T, Golbeck JH. Solar hydrogen-producing bio-nano device outperforms natural photosynthesis. Proc Natl Acad Sci U S A. 2011;108:20988–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo G, Talebnia F, Karakashev D, Xie L, Zhou Q, Angelidaki I. Enhanced bioenergy recovery from rapeseed plant in a biorefinery concept. Bioresour Technol. 2011;102:1433–9.

    Article  CAS  PubMed  Google Scholar 

  • Mahro B, Grimme LH. H2 photo production by green algae: the significance of anaerobic pre-incubation periods and of high light intensities for H2 photo-productivity of Chlorella fusca. Arch Microbiol. 1982;132:82–6.

    Article  CAS  Google Scholar 

  • Mahro B, Grimme LH. Improving the photosynthetic H2 productivity of the green alga Chlorella fusca by physiologically directed O2 avoidance and ammonium stimulation. Arch Microbiol. 1986;144:25–8.

    Article  CAS  Google Scholar 

  • Makarova VV, Kosourov S, Krendeleva TE, Semin BK, Kukarskikh GP, Rubin AB, Sayre RT, et al. Photoproduction of hydrogen by sulfur deprived C. reinhardtii mutants with impaired photosystem II photochemical activity. Photosynth Res. 2007;94:79–89.

    Article  CAS  PubMed  Google Scholar 

  • Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, et al. RNA-guided human genome engineering via Cas9. Science. 2013;339:823–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maneeruttanarungroj C, Lindblad P, Incharoensakdi A. Sulfate permease (SulP) and hydrogenase (HydA) in the green alga Tetraspora sp. CU2551: dependence of gene expression on sulfur status in the medium. Int J Hydrog Energy. 2012;37:15105–16.

    Article  CAS  Google Scholar 

  • Markov SA. Hydrogen production in bioreactors: current trends. Energy Procedia. 2012;29(394):400.

    Google Scholar 

  • Masukawa H, Kitashima M, Inoue K, Sakurai H, Hausinger RP. Genetic engineering of cyanobacteria to enhance biohydrogen production from sunlight and water. AMBIO J Hum Environ. 2012;41(S2):169–73.

    Article  CAS  Google Scholar 

  • Mathews J, Yiwangb G. Metabolic pathway engineering for enhanced biohydrogen production. Int J Hydrog Energy. 2009;34(17):7404–16.

    Article  CAS  Google Scholar 

  • Mayfield SP, Kindle KL. Stable nuclear transformation of Chlamydomonas reinhardtii by using a C. reinhardtii gene as the selectable marker. Proc Natl Acad Sci U S A. 1990;87:2087–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Melis A, Zhang L, Forestier M, Ghirardi ML, Seibert M, et al. Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii. Plant Physiol. 2000;122:127–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer J. [FeFe] hydrogenases and their evolution: a genomic perspective. Cell Mol Life Sci. 2007;64:1063–84.

    Article  CAS  PubMed  Google Scholar 

  • Meyer J, Gagnon J. Primary structure of hydrogenase I from Clostridium pasteurianum. Biochemistry. 1991;30:9697–704.

    Article  CAS  PubMed  Google Scholar 

  • Miron AS, Gomez AC, Camacho FG, Grima EM, Chisti Y. Comparative evaluation of compact photobioreactors for large-scale monoculture of microalgae. J Biotechnol. 1999;70:249–70.

    Article  Google Scholar 

  • Mizuno O, Ohara T, Shinya M, Noike T. Characteristics of hydrogen production from bean curd manufacturing waste by anaerobic microflora. Water Sci Technol. 2000;42:345–50.

    Article  CAS  Google Scholar 

  • Molina E, Fernández J, Acién FG, Chisti Y. Tubular photobioreactor design for algal cultures. J Biotechnol. 2001;92:113–31.

    Article  CAS  PubMed  Google Scholar 

  • Moreira SM, Santos MM, Guilhermino L, Ribeiro R. Immobilization of the marine microalga Phaeodactylum tricornutum in alginate for in situ experiments: bead stability and suitability. Enzym Microb Technol. 2006;38:135–41.

    Article  CAS  Google Scholar 

  • Mussgnug JH, Thomas-Hall SR, Rupprecht J, Foo A, Klassen V, McDowall A, Schenk PM, et al. Engineering photosynthetic light capture: impacts on improved solar energy to biomass conversion. Plant Biotechnol J. 2007;5:802–14.

    Article  CAS  PubMed  Google Scholar 

  • Nagarajan D, Lee D-J, Kondo A, Chang JS. Recent insights into bio-hydrogen production by microalgae from bio-photolysis to dark fermentation. Bioresour Technol. 2017;227:373–87.

    Article  CAS  Google Scholar 

  • Nandi R, Sengupta S. Microbial production of hydrogen: an overview. Crit Rev Microbiol. 1998;24:61–84.

    Article  CAS  PubMed  Google Scholar 

  • Natali A, Croce R. Characterization of the major light-harvesting complexes (LHCBM) of the green alga Chlamydomonas reinhardtii. PLoS One. 2015;10:e0119211.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Niyogi KK. Photoprotection revisited: genetic and molecular approaches. Annu Rev Plant Physiol. 1999;50:333–59.

    Article  CAS  Google Scholar 

  • Ntaikou I, Antonopoulou G, Lyberatos G. Biohydrogen production from biomass and wastes via dark fermentation: a review. Waste Biomass Valoriz. 2010;1:21–39.

    Article  CAS  Google Scholar 

  • Nyberg M, Heidorn T, Lindblad P. Hydrogen production by the engineered cyanobacterial strain Nostoc PCC 7120 D hupW examined in a flat panel photo bioreactor system. J Biotechnol. 2015;215:35–43.

    Article  CAS  PubMed  Google Scholar 

  • Obradovic A, Likozar B, Levec J. Catalytic surface development of novel nickel plate catalyst with combined thermally annealed platinum and alumina coatings for steam methane reforming. Int J Hydrog Energy. 2013;38:1419–29.

    Article  CAS  Google Scholar 

  • Oey M, Ross IL, Stephens E, Steinbeck J, Wolf J, Radzun KA, K€ugler J, et al. RNAi knock-down of LHCBM1, 2 and 3 increases photosynthetic H2 production efficiency of the green alga Chlamydomonas reinhardtii. PLoS One. 2013;8:e61375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oey M, Sawyer AL, Ross IL, Hankamer B. Challenges and opportunities for hydrogen production from microalgae. Plant Biotechnol J. 2016;14:1487–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ogbonna JC, Amano Y, Nakamura K, Yokotsuka K, Shimazu Y, Watanabe M, Hara S. A multistage bioreactor with replaceable bioplates for continuous wine fermentation. Am J Enol Vitic. 1989;40:292.

    CAS  Google Scholar 

  • Oh YK, Kim SH, Kim MS, Park S. Thermophilic biohydrogen production from glucose with trickling biofilter. Biotechnol Bioeng. 2006;88:690–8.

    Article  CAS  Google Scholar 

  • Oncel SS. Chapter 11: Biohydrogen from microalgae, uniting energy, life, and green future. In: Kim SK, editor. Handbook of marine microalgae. Elsevier; 2015. p. 159–196. https://doi.org/10.1016/B978-0-12-800776-1.00011-X, https://www.sciencedirect.com/book/9780128007761/handbook-of-marine-microalgae#book-info

    Chapter  Google Scholar 

  • Oncel S, Kose A. Comparison of tubular and panel type photobioreactors for biohydrogen production utilizing Chlamydomonas reinhardtii considering mixing time and light intensity. Bioresour Technol. 2014;151:265–70.

    Article  CAS  PubMed  Google Scholar 

  • Oncel S, Vardar-Sukan F. Photo-bioproduction of hydrogen by Chlamydomonas reinhardtii using a semi-continuous process regime. Int J Hydrog Energy. 2009;34:7592–602.

    Article  CAS  Google Scholar 

  • Park JH, Yoon JJ, Park HD, Kim YJ, Lim DJ, Kim SH. Feasibility of biohydrogen production from Gelidium amansii. Int J Hydrog Energy. 2006;36:13997–4003.

    Article  CAS  Google Scholar 

  • Pascal AA, Liu Z, Broess K, van Oort B, van Amerongen H, Wang C, Horton P, et al. Molecular basis of photoprotection and control of photosynthetic light-harvesting. Nature. 2005;436:134–7.

    Article  CAS  PubMed  Google Scholar 

  • Perkins J. Going commercial. BioFuels J. 2014;12:60–1.

    Google Scholar 

  • Perry JH. Chemical engineers’ handbook. New York: McGraw-Hill; 1963.

    Google Scholar 

  • Pinto TS, Malcata FX, Arrabaca JD, Silva JM, Spreitzer RJ, Esquıvel MG. Rubisco mutants of Chlamydomonas reinhardtii enhance photosynthetic hydrogen production. Appl Microbiol Biotechnol. 2013;97:5635–43.

    Article  CAS  PubMed  Google Scholar 

  • Polle JEW, Kanakagiri S, Jin E, Masuda T, Melis A. Truncated chlorophyll antenna size of the photosystems – a practical method to improve microalgal productivity and hydrogen production in mass culture. Int J Hydrog Energy. 2002;27:1257–64.

    Article  CAS  Google Scholar 

  • Polle JEW, Kanakagiri SD, Melis A. Tla1, a DNA insertional transformant of the green alga Chlamydomonas reinhardtii with a truncated light-harvesting chlorophyll antenna size. Planta. 2003;217:49–59.

    CAS  PubMed  Google Scholar 

  • Population Reference Bureau (PRB). 2013 world population data sheet. 2013. http://www.prb.org/pdf13/2013-population-data-sheet_eng.pdf. Accessed 29 Oct 2015.

  • Pow T, Krasna AI. Photoproduction of hydrogen from water in hydrogenase-containing algae. Arch Biochem Biophys. 1979;194:413–21.

    Article  CAS  PubMed  Google Scholar 

  • Ramachandran R, Menon RK. An overview of industrial uses of hydrogen. Int J Hydrog Energy. 1998;23:593–8.

    Article  CAS  Google Scholar 

  • Randt, Senger H. Participation of the two photosystems in light dependent hydrogen evolution in Scenedesmus obliquus. Photochem Photobiol. 1985;42:553–7.

    Article  CAS  Google Scholar 

  • Rashid N, Rehman MS, Memonb S, Rahman Z, Lee K, Han JI. Current status, barriers and developments in bio-hydrogen production by microalgae. Renew Sust Energ Rev. 2013;22:571–9.

    Article  CAS  Google Scholar 

  • Redwood MD, Beedle MP, Macaskie LE. Integrating dark and light bio-hydrogen production strategies: towards the hydrogen economy. Rev Environ Sci Biotechnol. 2009;8:149–85.

    Article  CAS  Google Scholar 

  • Reifschneider-Wegner K, Kanygin A, Redding KE. Expression of the [FeFe] hydrogenase in the chloroplast of Chlamydomonas reinhardtii. Int J Hydrog Energy. 2014;39:3657–65.

    Article  CAS  Google Scholar 

  • Robertson D, Boynton JE, Gillham NW. Cotranscription of the wild-type chloroplast atpE gene encoding the CF1/CF0 epsilon subunit with the 30 half of the rps7 gene in Chlamydomonas reinhardtii and characterization of frameshift mutations in atpE. Mol Gen Genet. 1990;221:155–63.

    Article  CAS  PubMed  Google Scholar 

  • Rosenkrans AM, Krasna AI. Stimulation of hydrogen photoproduction in algae by removal of oxygen by reagents that combine reversibly with oxygen. Biotechnol Bioeng. 1984;26:1334–42.

    Article  CAS  PubMed  Google Scholar 

  • Ruehle T, Hemschemeier A, Melis A, Happe T. A novel screening protocol for the isolation of hydrogen producing Chlamydomonas reinhardtii strains. BMC Plant Biol. 2008;8:107.

    Article  CAS  Google Scholar 

  • Rumpel S, Siebel JF, Fares C, Duan J, Reijerse E, Happe T, Lubitz W, et al. Enhancing hydrogen production of microalgae by redirecting electrons from photosystem I to hydrogenase. Energy Environ Sci. 2014;7:3296–301.

    Article  CAS  Google Scholar 

  • Sch€onfeld C, Wobbe L, Borgst€adt R, Kienast A, Nixon PJ, Kruse O. The nucleus-encoded protein MOC1 is essential for mitochondrial light acclimation in Chlamydomonas reinhardtii. J Biol Chem. 2004;279:50366–74.

    Article  PubMed  CAS  Google Scholar 

  • Schara V, Maeda GT, Wood TK. Metabolically engineered bacteria for producing hydrogen via fermentation. Microb Biotechnol. 2008;1(2):107–25.

    Article  CAS  Google Scholar 

  • Schulz R, Schnackenberg J, Stangier K, W€unschiers R, Zinn T, Senger H. Light-dependent hydrogen production of the green alga Scenedesmus obliquus. In: Zaborsky O, Benemann J, Matsunaga T, Miyake J, San Pietro A, editors. BioHydrogen. New York: Springer; 1998. p. 243–51.

    Google Scholar 

  • Scoma A, Krawietz D, Faraloni C, Giannelli L, Happe T, Torzillo G. Sustained H2 production in a Chlamydomonas reinhardtii D1 protein mutant. J Biotechnol. 2012;157:613–9.

    Article  CAS  PubMed  Google Scholar 

  • Seibert M, Flynn T, Benson D, Tracy E, Ghirard M. Development of selection and screening procedures for rapid identification of H2-producing algal mutants with increased O2 tolerance. In: Zaborsky OR, editor. Biohydrogen. New York: Springer; 1998. p. 227–34.

    Google Scholar 

  • Sevda S, Bhattacharya S, Abu Reesh IM, Bhuvanesh S, Sreekrishnan TR. Challenges in the design and operation of an efficient photobioreactor for microalgae cultivation and hydrogen production. In: Singh A, Rathore D, editors. Biohydrogen production: sustainability of current technology and future perspective. New Delhi: Springer; 2017. p. 147–62.

    Chapter  Google Scholar 

  • Shima S, Pilak O, Vogt S, Schick M, Stagni MS, Klaucke WM, Warkentin E, Thauer RK, Ermler U. The crystal structure of [Fe]-hydrogenase reveals the geometry of the active site. Science. 2008;321:572–5.

    Article  CAS  PubMed  Google Scholar 

  • Shimogawara K, Fujiwara S, Grossman A, Usuda H. High efficiency transformation of Chlamydomonas reinhardtii by electroporation. Genetics. 1998;148:1821–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Show KY, Lee DJ, Chang JS. Bioreactor and process design for biohydrogen production. Bioresour Technol. 2011;102:8524–33.

    Article  CAS  PubMed  Google Scholar 

  • Sizova I, Greiner A, Awasthi M, Kateriya S, Hegemann P. Nuclear gene targeting in Chlamydomonas using engineered zinc-finger nucleases. Plant J. 2013;73:873–82.

    Article  CAS  PubMed  Google Scholar 

  • Skjånes K, Rebours C, Lindblad P. Potential for green microalgae to produce hydrogen, pharmaceuticals and other high value products in a combined process. Crit Rev Biotechnol. 2013;33:172–215.

    Article  PubMed  CAS  Google Scholar 

  • Slegers PM, van Beveren PJM, Wijffels RH, van Straten G, van Boxtel AJB. Scenario analysis of large scale algae production in tubular photobioreactors. Appl Energy. 2013;105:395–406.

    Article  Google Scholar 

  • Smith GD, Ewart GD, Tucker W. Hydrogen production by cyanobacteria. Int J Hydrog Energy. 1992;17:695–8.

    Article  CAS  Google Scholar 

  • Srirangan K, Pyne ME, Perry Chou C. Biochemical and genetic engineering strategies to enhance hydrogen production in photosynthetic algae and cyanobacteria. Bioresour Technol. 2011;102:8589–604.

    Article  CAS  PubMed  Google Scholar 

  • Stiebritz MT, Reiher M. Hydrogenases and oxygen. Chem Sci. 2012;3:1739–51.

    Article  CAS  Google Scholar 

  • Sun Y, Chen M, Yang H, Zhang J, Kuang T, Huang F. Enhanced H2 photoproduction by down-regulation of ferredoxin-NADP(+) reductase (FNR) in the green alga Chlamydomonas reinhardtii. Int J Hydrog Energy. 2013;38:16029–37.

    Article  CAS  Google Scholar 

  • Surzycki R, Cournac L, Peltiert G, Rochaix JD. Potential for hydrogen production with inducible chloroplast gene expression in Chlamydomonas. Proc Natl Acad Sci U S A. 2007;104:17548–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi H, Iwai M, Takahashi Y, Minagawa J. Identification of the mobile light-harvesting complex II polypeptides for state transitions in Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A. 2006;103:477–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamagnini P, Leitao E, Oliveira P, Ferreira D, Pinto F, Harris DJ, Heidorn T, Lindblad P. Cyanobacterial hydrogenases: diversity, regulation and applications. FEMS Microbiol Rev. 2007;31:692–720.

    Article  CAS  PubMed  Google Scholar 

  • Tiwari MK, Guha S, Harendranath CS, Tripathi S. Influence of extrinsic factors on granulation in UASB reactor. Appl Microbiol Biotechnol. 2006;71:145–54.

    Article  CAS  PubMed  Google Scholar 

  • Tolleter D, Ghysels B, Alric J, Petroutso D, Tolstygina I, Krawietz D, Happe T, et al. Control of hydrogen photoproduction by the proton gradient generated by cyclic electron flow in Chlamydomonas reinhardtii. Plant Cell. 2011;23:2619–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torzillo G, Scoma A, Faraloni C, Ena A, Johanningmeier U. Increased hydrogen photoproduction by means of a sulfur-deprived Chlamydomonas reinhardtii D1 protein mutant. Int J Hydrog Energy. 2009;34:4529–36.

    Article  CAS  Google Scholar 

  • UN Report. Sustainable bioenergy: a framework for decision makers; 2007.

    Google Scholar 

  • Vogt S, Lyon EJ, Shima S, Thauer RK. The exchange activities of [Fe] hydrogenase (iron-sulfur-cluster-free hydrogenase) from methanogenic archaea in comparison with the exchange activities of [FeFe] and [NiFe] hydrogenases. J Biol Inorg Chem. 2008;13:97–106.

    Article  CAS  PubMed  Google Scholar 

  • Volgusheva A, Kukarskikh G, Krendeleva T, Rubin A, Mamedov F. Hydrogen photoproduction in green algae Chlamydomonas reinhardtii under magnesium deprivation. RSC Adv. 2015;5:5633–563.

    Article  CAS  Google Scholar 

  • Wang J, Wan W. Factors influencing fermentative hydrogen production: a review. Int J Hydrog Energy. 2009;34:799–811.

    Article  CAS  Google Scholar 

  • Wang RN, Cao AG, Xu J, Gao L. Bioconversion of lignocellulosic biomass to hydrogen: potential and challenges. Biotechnol Adv. 2009;27:1051–60.

    Article  PubMed  CAS  Google Scholar 

  • Wang A, Sun D, Cao G, Wang H, Ren NQ, Wu WM, Logan BE. Integrated hydrogen production process from cellulose by combining dark fermentation microbial fuel cells, and a microbial electrolysis cell. Bioresour Technol. 2011;102:4137–43.

    Article  CAS  PubMed  Google Scholar 

  • Weare NM, Benemann JR. Nitrogenase activity and photosynthesis in Plectonema boryanum. J Bacteriol. 1974;119:258–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wecker MSA, Ghirardi ML. High-throughput biosensor discriminates between different algal H2-photoproducing strains. Biotechnol Bioeng. 2014;111:1332–40.

    Article  CAS  PubMed  Google Scholar 

  • Welch C. Carbon emissions had leveled off, now they’re rising again. Natl Geogr. 2017. https://news.nationalgeographic.com/2017/11/climate-change-carbon emissions-rising-environment/

  • Winkler M, Hemschemeier A, Gotor C, Melis A, Happe T, et al. [Fe]-hydrogenase in green algae: photo-fermentation and hydrogen evolution under sulphur deprivation. Int J Hydrog Energy. 2002;27:1431–9.

    Article  CAS  Google Scholar 

  • Winkler M, Kuhlgert S, Hippler M, Happe T. Characterization of the key step for light-driven hydrogen evolution in green algae. J Biol Chem. 2009;284:36620–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winkler M, Kawelke S, Happe T. Light driven hydrogen production in protein based semi-artificial systems. Bioresour Technol. 2011;102:8493–500.

    Article  CAS  PubMed  Google Scholar 

  • Wittenberg G, Sheffler W, Darchi D, Baker D, Noy D. Accelerated electron transport from photosystem I to redox partners by covalently linked ferredoxin. Phys Chem Chem Phys. 2013;15:19608–14.

    Article  CAS  PubMed  Google Scholar 

  • Wu S, Huang R, Xu L, Yan G, Wang Q. Improved hydrogen production with expression of hemH and lba genes in chloroplast of Chlamydomonas reinhardtii. J Biotechnol. 2010;146:120–5.

    Article  CAS  PubMed  Google Scholar 

  • Wu S, Xu L, Huang R, Wang Q. Improved biohydrogen production with an expression of codon-optimized hemH and lba genes in the chloroplast of Chlamydomonas reinhardtii. Bioresour Technol. 2011;102:2610–6.

    Article  CAS  PubMed  Google Scholar 

  • Yacoby I, Pochekailov S, Toporik H, Ghirardi ML, King PW, Zhang S. Photosynthetic electron partitioning between FeFe -hydrogenase and ferredoxin: NADP(+)-oxidoreductase (FNR) enzymes in vitro. Proc Natl Acad Sci U S A. 2011;108:9396–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yeom SH, Yoo YJ. Removal of benzene in a hybrid bioreactor. Process Biochem. 1999;34(3):281–8.

    Article  CAS  Google Scholar 

  • Yilmaz F, Balta MT, Selbas R. A review of solar based hydrogen production methods. Renew Sust Energ Rev. 2016;56:171–8.

    Article  CAS  Google Scholar 

  • Yokoi H, Saitsu A, Uchida H, Hirose J, Hayashi S, Takasaki Y. Microbial hydrogen production from sweet potato starch residue. J Biosci Bioeng. 2001;91:58–63.

    Article  CAS  PubMed  Google Scholar 

  • Yoon JH, Shin JH, Kim MS, Sim SJ, Park TH. Evaluation of conversion efficiency of light to hydrogen energy by Anabaena variabilis. Int J Hydrog Energy. 2006;31:721–7.

    Article  CAS  Google Scholar 

  • Younesi H, Najafpour G, Ismail KSK, Mohamed AR, Kamaruddin AH. Biohydrogen production in a continuous stirred tank bioreactor from synthesis gas by anaerobi photosynthetic bacterium: Rhodopirillum rubrum. Bioresour Technol. 2008;99(7):2612–9.

    Article  CAS  PubMed  Google Scholar 

  • Zhang ZP, Adav SS, Show KY, Tay JH, Liang DT, Lee DJ, Jiang. Effect of hydraulic retention time on biohydrogen production and anaerobic microbial community. Process Biochem. 2006a;41:2118–23.

    Article  CAS  Google Scholar 

  • Zhang HS, Bruns MA, Logan BE. Biological hydrogen production by Clostridium acetobutylicum in an unsaturated flow reactor. Water Res. 2006b;40:728–34.

    Article  CAS  PubMed  Google Scholar 

  • Zhang ZP, Adav SS, Show KY, Tay JH, Liang DT, Lee DJ. Characteristics of rapidly formed hydrogen-producing granules and biofilms. Biotechnol Bioeng. 2008a;101:926–36.

    Article  CAS  PubMed  Google Scholar 

  • Zhang ZP, Show KY, Tay JH, Liang TD, Lee DJ. Enhanced continuous biohydrogen production by immobilized anaerobic microflora. Energy Fuel. 2008b;22:87–92.

    Article  CAS  Google Scholar 

  • Zhang R, Patena W, Armbruster U, Gang SS, Blum SR, Jonikas MC. High-throughput genotyping of green algal mutants reveals random distribution of mutagenic insertion sites and endonucleolytic cleavage of transforming DNA. Plant Cell. 2014;26:1398–409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

We are greatful to the authorities of Designated Reference Institute for Chemical Measurements (DRiCM), Bangladesh Council of Scientific and Industrial Research (BCSIR), and Md Asraful Alam, PhD, GIEC-CAS, China for supporting to write this book chapter.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Razu, M.H., Hossain, F., Khan, M. (2019). Advancement of Bio-hydrogen Production from Microalgae. In: Alam, M., Wang, Z. (eds) Microalgae Biotechnology for Development of Biofuel and Wastewater Treatment. Springer, Singapore. https://doi.org/10.1007/978-981-13-2264-8_17

Download citation

Publish with us

Policies and ethics