Skip to main content

Approximate Bit Error Rate of DPSK with Imperfect Phase Noise in TWDP Fading

  • Conference paper
  • First Online:
  • 490 Accesses

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 847))

Abstract

This study provides closed-form expressions for average bit error rate (ABER) of differential phase shift keying (DPSK) with phase error in two-wave with diffuse power (TWDP) fading. It is considered that the envelope of phase error is Gaussian distributed. The effect of phase synchronization on wireless system is studied for different values of TWDP fading parameters and phase error. The analytical results are evaluated to study the impact of phase error on the system performance. Also, the results are compared with the case of perfectly synchronized.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Viterbi, A.J.: Phase-locked loop dynamics in the presence of noise by Fokker-Planck techniques. Proc. IEEE 51, 1737–1753 (1963)

    Article  Google Scholar 

  2. Simon, M.K., Alouini, M.S.: Simplified noisy reference loss evaluation for digital communication in the presence of slow fading and carrier phase error. IEEE Trans. Veh. Technol. 50(2), 480–486 (2001)

    Article  Google Scholar 

  3. Lo, C.M., Lam, W.H.: Error probability of binary phase shift keying in Nakagami-m fading channel with phase noise. Electron. Lett. 36(21), 1773–1774 (2000)

    Article  Google Scholar 

  4. Lindsey, W.C.: Phase-shift-keyed signal detection with noisy reference signals. IEEE Trans. Aerosp. Electron. Syst. 2, 393–401 (1966)

    Article  Google Scholar 

  5. Prabhu, V.K.: PSK performance with imperfect carrier phase recovery. IEEE Trans. Aerosp. Electron. Syst. 12, 275–285 (1976)

    Article  Google Scholar 

  6. Chandra, A., Patra, A., Bose, C.: Performance analysis of PSK systems with phase error in fading channels: a survey. Phys. Commun. 4, 63–82 (2011)

    Article  Google Scholar 

  7. Smadi, M.A., Aljazar, S.O., Ghaeb, J.A.: Simplified bit error rate evaluation of Nakagami-m PSK systems with phase error recovery. Wirel. Commun. Mob. Comput. 12, 248–256 (2012)

    Article  Google Scholar 

  8. Durgin, G.D., Rappaport, T.S., de Wolf, D.A.: New analytical models and probability density functions for fading in wireless communications. IEEE Trans. Commun. 50(6), 1005–1015 (2002)

    Article  Google Scholar 

  9. Subadar, R., Singh, A.D.: Performance of SC receiver over TWDP fading channels. IEEE Wirel. Commun. Lett. 2(3), 267–270 (2013)

    Article  Google Scholar 

  10. Singh, S., Kansal, V.: Performance of M-ary PSK over TWDP fading channels. Int. J. Electron. Lett. 4(4), 433–437 (2015)

    Article  Google Scholar 

  11. Das, P., Subadar, R.: Performance of M-EGC receiver over TWDP fading channels. IET Commun. 11(12), 1853–1856 (2017)

    Article  Google Scholar 

  12. Singh, S., Sharma, S.: Performance analysis of spectrum sensing techniques over TWDP fading channels for CR based IoTs. Int. J. Electron. Commun. 80, 210–217 (2017)

    Article  Google Scholar 

  13. Lindsey, W.C., Simon, M.K.: Telecommunication Systems Engineering. Prentice-Hall, Englewood Cliffs, NJ (1973)

    Google Scholar 

  14. Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products, 7th edn. Academic Press (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simranjit Singh .

Editor information

Editors and Affiliations

Appendix

Appendix

The expression in (11) can be further solved by using identity given in ([14], 6.6.14.3) as:

$$\int\limits_{0}^{\infty } {\exp \left( { - \alpha x} \right)} I_{2v} \left( {2\sqrt {\beta x} } \right){\text{d}}x = \frac{1}{{\sqrt {\alpha \beta } }}\exp \left( {\frac{\beta }{2\alpha }} \right)\frac{{\Gamma \left( {v + 1} \right)}}{{\Gamma \left( {2v + 1} \right)}}M_{ - 1/2,v} \left( {\frac{\beta }{\alpha }} \right)$$

Now, (11) can be simplified as:

$$\begin{aligned} P_{e} & = \frac{\eta }{4}\sum\limits_{i = 1}^{L} {a_{i} } \sum\limits_{j = 0}^{1} {\exp \left( { - P_{2i - j} } \right)} \left( {1 - \frac{2}{C}} \right)^{ - 1/2} \exp \left( {\frac{{P_{2i - j} \eta }}{{2\left( {1 + \eta } \right)}}} \right) \\ & \quad \times \frac{1}{{\sqrt {\left( {1 + \eta } \right)P_{2i - j} \eta } }}M_{ - 1/2,0} \left( {\frac{{P_{2i - j} \eta }}{1 + \eta }} \right) \\ \end{aligned}$$
(13)

Use \(M_{k,s} \left( z \right) = \exp \left( {\frac{ - z}{2}} \right)z^{s + 1/2} M\left( {s - k + \frac{1}{2};1 + 2s;z} \right)\) [14] in (13), and the final equation can be obtained as given in (12).

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kansal, V., Singh, S. (2019). Approximate Bit Error Rate of DPSK with Imperfect Phase Noise in TWDP Fading. In: Jain, L., E. Balas, V., Johri, P. (eds) Data and Communication Networks. Advances in Intelligent Systems and Computing, vol 847. Springer, Singapore. https://doi.org/10.1007/978-981-13-2254-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-2254-9_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-2253-2

  • Online ISBN: 978-981-13-2254-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics