Skip to main content

Role of Phytohormones in Enhancing Antioxidant Defense in Plants Exposed to Metal/Metalloid Toxicity

  • Chapter
  • First Online:

Abstract

A number of factors adversely affect the plant health and, ultimately, the agricultural yield. Various abiotic stress factors including temperature variation, flooding, salinity, drought, nutrient depletion and environmental toxicities cause significant losses annually. Among these, metal and metalloid toxicity results in physiological, morphological and metabolic alteration in plant body. Mediated through various mechanisms, these ions result in early cell death. The oxidative stress, owing to the production of various reactive oxygen species is the most important contributing agent. Phytohormones produced by plants help to counteract the effects of these stress factors. Through a number of enzymatic and non-enzymatic pathways, they regulate the antioxidant pathways in the plant body. The study of these phytohormones can help in developing an understanding of the metabolic processes and can help in providing important checkpoints for employing interventional strategies to enhance the antioxidant potential of metal-stressed plants. This chapter summarizes the role of various phytohormones in the antioxidant response to metal stress. Moreover, various mechanisms that are employed by the plants to enhance their antioxidant potential have been discussed. Towards the end, the regulation of phytohormone-mediated antioxidation has been provided.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

2,4-D:

2,4-dichlorophenoxyacetic acid

24-EpiBL:

24-epibrassinolide

28-HomoBL:

28-homobrassinolide

2-CEPA:

2-chlorethylphosphonic acid

ABA:

Abscisic acid

ABC:

ATP binding cassette

ACC:

1-aminocyclopropane-1-carboxylic acid

ACO:

1-aminocyclopropane-1-carboxylic acid oxidase

ADC:

Arginine decarboxylase

AFB:

Auxin signaling F-box

Al:

Aluminum

APOX:

Ascorbate peroxidase

APX:

Ascorbate peroxidase

Ar:

Arsenic

ASA/ASC:

Ascorbic acid

AtHSD gene:

Arabidopsis thaliana hydroxysteroid dehydrogenase gene

AUX1:

Auxin resistant 1

B:

Boron

BR:

Brassinosteroids

CaCA:

Ca2+/cation antiporter

CAT:

Catalase

Cd:

Cadmium

CDF:

Cation diffusion facilitator

CDPK:

Calcium-dependent protein kinase

CK:

Cytokinin

Cr:

Chromium

CTR:

Copper transporters family

Cu:

Copper

DHA:

Dehydro ascorbic acid

DHAR:

Dehydroascorbate reductase

DNA:

Deoxyribonucleic acid

EIN2:

Ethylene insensitive 2

ERFs:

Ethylene response factors

ET:

Ethylene

FAD:

Flavin adenine dinucleotide

Fe:

Iron

GA:

Gibberellins

GH3:

Glycoside hydrolase

GOPX:

Guaiacol peroxidase

GPX:

Glutathione peroxidase

GR:

Glutathione reductase

GSH:

Glutathione

GSSG:

Glutathione disulfide

GST:

Glutathione-S-transferase

Hg:

Mercury

His:

Histidine

HMA:

Heavy metal ATPase

HSPs:

Heat shock proteins

IAA:

Indole-3-acetic acid

IBA:

Indole butyric acid

Irt:

Iron regulated transporter

JA:

Jasmonic acid

LEA:

Late embryogenesis abundant

LPO:

Lipid peroxidation

MAPK:

Mitogen-activated protein kinase

MDHA:

Monodehydro ascorbate

MDHAR:

Monodehydroascorbate reductase

MeJA:

Methyl jasmonate

Mn:

Manganese

MT:

Metallothioneins

NAA:

Naphthalene acetic acid

NADPH:

Nicotinamide adenine dinucleotide phosphate

Ni:

Nickel

NO:

Nitric oxide

NRAMP:

Natural resistance-associated macrophage proteins

ODC:

Ornithine decarboxylase

OsGSK1:

Oryza sativa glycogen synthase kinase3-like gene 1

PA:

Polyamines

Pb:

Lead

PC:

Phytochelatin

PEPC:

Phosphoenolpyruvate carboxylase

PEX:

Peroxisome

PGPR:

Plant growth-promoting rhizobacteria

PIN:

Pin-formed

PS-II:

Photo system 2

Put:

Putrescine

RNS:

Reactive nitrogen species

ROS:

Reactive oxygen species

RuBisCO:

Ribulose bisphosphate carboxylase/oxygenase

SA:

Salicylic acid

SAMDC:

S-adenosyl methionine decarboxylase

SAPs:

Stress associated proteins

SOD:

Superoxide dismutase

Spd:

Spermidine

SPDS:

Spermidine synthase

Spm:

Spermine

Th:

Thallium

TIR1:

Transport inhibitor response 1

Tpx1:

Thioredoxin peroxidase

ZIP:

Zrt-and irt-like protein (ZIP)

Zn:

Zinc

Zrt:

Zinc-regulated transporter

References

  • Agami RA, Mohamed GF (2013) Exogenous treatment with indole-3-acetic acid and salicylic acid alleviates cadmium toxicity in wheat seedlings. Ecotoxicol Environ Saf 94:164–171

    Article  CAS  PubMed  Google Scholar 

  • Agarwal S, Sairam R, Srivastava G, Meena R (2005) Changes in antioxidant enzymes activity and oxidative stress by abscisic acid and salicylic acid in wheat genotypes. Biol Plant 49:541–550

    Article  CAS  Google Scholar 

  • Ahmad P, Umar S, Sharma S (2010) Mechanism of free radical scavenging and role of phytohormones in plants under abiotic stresses. In: Ashraf M, Ozturk M, Ahmad MSA (eds) Plant adaptation and phytoremediation. Springer, Dordrecht, pp 99–118

    Chapter  Google Scholar 

  • Ali B, Hasan S, Hayat S, Hayat Q, Yadav S, Fariduddin Q, Ahmad A (2008) A role for brassinosteroids in the amelioration of aluminium stress through antioxidant system in mung bean (Vigna radiata L. Wilczek). Environ Exp Bot 62:153–159

    Article  CAS  Google Scholar 

  • Ali-Zade V, Alirzayeva E, Shirvani T (2010) Plant resistance to anthropogenic toxicants: approaches to phytoremediation. In: Ashraf M, Ozturk M, MSA A (eds) Plant adaptation and phytoremediation. Springer, Dordrecht, pp 173–192

    Chapter  Google Scholar 

  • Alkorta I, Hernández-Allica J, Becerril J, Amezaga I, Albizu I, Garbisu C (2004) Recent findings on the phytoremediation of soils contaminated with environmentally toxic heavy metals and metalloids such as zinc, cadmium, lead, and arsenic. Rev Environ Sci Biotechnol 3:71–90

    Article  CAS  Google Scholar 

  • Alloway BJ (2013) Sources of heavy metals and metalloids in soils. In: Alloway BJ (ed) Heavy metals in soils. Springer, Dordrecht, pp 11–50

    Chapter  Google Scholar 

  • Alonso JM, Hirayama T, Roman G, Nourizadeh S, Ecker JR (1999) EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis. Science 284:2148–2152

    Article  CAS  PubMed  Google Scholar 

  • Anjum NA, Umar S, Iqbal M, Khan NA (2011) Cadmium causes oxidative stress in mung bean by affecting the antioxidant enzyme system and ascorbate-glutathione cycle metabolism. Russ Int J Plant Physiol 58:92–99

    Article  CAS  Google Scholar 

  • Anjum NA, Gill SS, Gill R, Hasanuzzaman M, Duarte AC, Pereira E, Ahmed I, Tuteja R, Tuteja N (2014) Metal/metalloid stress tolerance in plants: role of ascorbate, its redox couple, and associated enzymes. Protoplasma 251:1265–1283

    Article  CAS  PubMed  Google Scholar 

  • Anuradha V, Jaleel CA, Salem MA, Gomathinayagam M, Panneerselvam R (2010) Plant growth regulators induced changes in antioxidant potential and andrographolide content in Andrographis paniculata Wall. ex Nees. Pestic Biochem Physiol 98:312–316

    Article  CAS  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  PubMed  Google Scholar 

  • Asada K (1992) Ascorbate peroxidase–a hydrogen peroxide-scavenging enzyme in plants. Physiol Plant 85:235–241

    Article  CAS  Google Scholar 

  • Asgher M, Khan MIR, Anjum NA, Khan NA (2015) Minimising toxicity of cadmium in plants—role of plant growth regulators. Protoplasma 252:399–413

    Article  CAS  PubMed  Google Scholar 

  • Ashfaque F, Inam A, Sahay S, Iqbal S (2016) Influence of heavy metal toxicity on plant growth, metabolism and its alleviation by phytoremediation-a promising technology. Int J Agric Ecol Res Int 6:1–19

    Google Scholar 

  • Ashraf M, Ozturk M, Ahmad MSA (2010) Toxins and their phytoremediation. In: Ashraf M, Ozturk M, Ahmad MSA (eds) Plant adaptation and phytoremediation. Springer, Dordrecht, pp 1–32

    Chapter  Google Scholar 

  • Atici Ö, Ağar G, Battal P (2005) Changes in phytohormone contents in chickpea seeds germinating under lead or zinc stress. Biol Plant 49:215–222

    Article  CAS  Google Scholar 

  • Atzorn R, Crozier A, Wheeler C, Sandberg G (1988) Production of gibberellins and indole-3-acetic acid by Rhizobium phaseoli in relation to nodulation of Phaseolus vulgaris roots. Planta 175:532–538

    Article  CAS  PubMed  Google Scholar 

  • Aval’baev A, Bezrukova M, Shakirova F (2003) Effect of brassinosteroids on the hormonal balance in wheat seedlings. Paper presented at the Doklady Biological Sciences

    Google Scholar 

  • Bajguz A, Hayat S (2009) Effects of brassinosteroids on the plant responses to environmental stresses. Plant Physiol Biochem 47:1–8

    Article  CAS  PubMed  Google Scholar 

  • Bartha B, Kolbert Z, Erdei L (2005) Nitric oxide production induced by heavy metals in Brassica juncea L. Czern. and Pisum sativum L. Acta Biol Szeged 49:9–12

    Google Scholar 

  • Bassi R, Sharma SS (1993) Changes in proline content accompanying the uptake of zinc and copper by Lemna minor. Ann Bot 72:151–154

    Article  CAS  Google Scholar 

  • Bastián F, Cohen A, Piccoli P, Luna V, Bottini R, Baraldi R (1998) Production of indole-3-acetic acid and gibberellins A1 and A3 by Acetobacter diazotrophicus and Herbaspirillum seropedicae in chemically-defined culture media. Plant Growth Regul 24:7–11

    Article  Google Scholar 

  • Beligni MV, Lamattina L (1999) Nitric oxide counteracts cytotoxic processes mediated by reactive oxygen species in plant tissues. Planta 208:337–344

    Article  CAS  Google Scholar 

  • Belkadhi A, De Haro A, Soengas P, Obregon S, Cartea ME, Chaibi W, Djebali W (2014) Salicylic acid increases tolerance to oxidative stress induced by hydrogen peroxide accumulation in leaves of cadmium-exposed flax (Linum usitatissimum L.). Int J Plant Interact 9:647–654

    Article  CAS  Google Scholar 

  • Benschop JJ, Jackson MB, Gühl K, Vreeburg RA, Croker SJ, Peeters AJ, Voesenek LA (2005) Contrasting interactions between ethylene and abscisic acid in Rumex species differing in submergence tolerance. Plant J 44:756–768

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharjee S (2005) Reactive oxygen species and oxidative burst: roles in stress, senescence and signal transduction in plants. Curr Sci 89:1113–1121

    CAS  Google Scholar 

  • Bin Z, Fei-Juan W, Cheng Z, Zong-Xiu S (2008) Effect of ascorbate-glutathione (AsA-GSH) cycle on Hg 2+−tolerance in rice mutant. Acta Agron Sin 34:823–830

    Google Scholar 

  • Blokhina O, Virolainen E, Fagerstedt KV (2003) Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot 91:179–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bočová B, Huttová J, Mistrík I, Tamás L (2013) Auxin signalling is involved in cadmium-induced glutathione-S-transferase activity in barley root. Acta Physiol Plant 35:2685–2690

    Article  CAS  Google Scholar 

  • Bohnert HJ (2007) Abiotic stress. eLS. https://doi.org/10.1002/9780470015902.a0020087

  • Bucker-Neto L, Paiva ALS, Machado RD, Arenhart RA, Margis-Pinheiro M (2017) Interactions between plant hormones and heavy metals responses. Genet Mol Biol 40:373–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chao YY, Chen CY, Huang WD, Kao CH (2010) Salicylic acid-mediated hydrogen peroxide accumulation and protection against Cd toxicity in rice leaves. Plant Soil 329:327–337

    Article  CAS  Google Scholar 

  • Chaoui A, Mazhoudi S, Ghorbal MH, El Ferjani E (1997) Cadmium and zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in bean (Phaseolus vulgaris L.). Plant Sci 127:139–147

    Article  CAS  Google Scholar 

  • Chen Z, Gallie DR (2006) Dehydroascorbate reductase affects leaf growth, development, and function. Plant Physiol 142:775–787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen CT, Chen LM, Lin CC, Kao CH (2001) Regulation of proline accumulation in detached rice leaves exposed to excess copper. Plant Sci 160:283–290

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Yan Z, Li X (2014) Effect of methyl jasmonate on cadmium uptake and antioxidative capacity in Kandelia obovata seedlings under cadmium stress. Ecotoxicol Environ Saf 104:349–356

    Article  CAS  PubMed  Google Scholar 

  • Cheng H, Qin L, Lee S, Fu X, Richards DE, Cao D, Luo D, Harberd NP, Peng J (2004) Gibberellin regulates Arabidopsis floral development via suppression of DELLA protein function. Development 131:1055–1064

    Article  CAS  PubMed  Google Scholar 

  • Cheng MC, Liao PM, Kuo WW, Lin TP (2013) The Arabidopsis ETHYLENE RESPONSE FACTOR1 regulates abiotic stress-responsive gene expression by binding to different cis-acting elements in response to different stress signals. Plant Physiol 162:1566–1582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chibuike GU, Obiora SC (2014) Heavy metal polluted soils: effect on plants and bioremediation methods. Appl Environ Soil Sci 2014:12. https://doi.org/10.1155/2014/752708

    Article  CAS  Google Scholar 

  • Choudhary SP, Kanwar M, Bhardwaj R, Yu JQ, Tran LSP (2012a) Chromium stress mitigation by polyamine-brassinosteroid application involves phytohormonal and physiological strategies in Raphanus sativus L. PLoS One 7:e33210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choudhary SP, Yu JQ, Yamaguchi-Shinozaki K, Shinozaki K, Tran LSP (2012b) Benefits of brassinosteroid crosstalk. Trends Plant Sci 17:594–605

    Article  CAS  PubMed  Google Scholar 

  • Ciarmiello LF, Woodrow P, Fuggi A, Pontecorvo G, Carillo P (2011) Plant genes for abiotic stress. In: Shanker A (ed) Abiotic stress in plants-mechanisms and adaptations. InTech, Rijeka, pp 283–308

    Google Scholar 

  • Clemens S (2006) Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 88:1707–1719

    Article  CAS  PubMed  Google Scholar 

  • Correa-Aragunde N, Graziano M, Lamattina L (2004) Nitric oxide plays a central role in determining lateral root development in tomato. Planta 218:900–905

    Article  CAS  PubMed  Google Scholar 

  • Cramer GR, Urano K, Delrot S, Pezzotti M, Shinozaki K (2011) Effects of abiotic stress on plants: a systems biology perspective. BMC Plant Biol 11:163

    Article  PubMed  PubMed Central  Google Scholar 

  • Dimkpa C, Weinand T, Asch F (2009) Plant–rhizobacteria interactions alleviate abiotic stress conditions. Plant Cell Environ 32:1682–1694

    Article  CAS  PubMed  Google Scholar 

  • Dinneny JR, Long TA, Wang JY, Jung JW, Mace D, Pointer S, Barron C, Brady SM, Dchiefelbein J, Benfey PN (2008) Cell identity mediates the response of Arabidopsis roots to abiotic stress. Science 320:942–945

    Article  CAS  PubMed  Google Scholar 

  • Divi UK, Krishna P (2009) Brassinosteroid: a biotechnological target for enhancing crop yield and stress tolerance. New Biotechnol 26:131–136

    Article  CAS  Google Scholar 

  • El-Gaied LF, Abu El-Heba GA, El-Sherif NA (2013) Effect of growth hormones on some antioxidant parameters and gene expression in tomato. GM Crops Food 4:67–73

    Article  PubMed  Google Scholar 

  • Ercal N, Gurer-Orhan H, Aykin-Burns N (2001) Toxic metals and oxidative stress part I: mechanisms involved in metal-induced oxidative damage. Curr Top Med Chem 1:529–539

    Article  CAS  PubMed  Google Scholar 

  • Fahad S, Hussain S, Bano A, Saud S, Hassan S, Shan D, Khan FA, Khan F, Chen Y, Wu C, Tabassum MA (2015) Potential role of phytohormones and plant growth-promoting rhizobacteria in abiotic stresses: consequences for changing environment. Environ Sci Pollut Res 22:4907–4921

    Article  Google Scholar 

  • Fariduddin Q, Yusuf M, Ahmad I, Ahmad A (2014) Brassinosteroids and their role in response of plants to abiotic stresses. Biol Plant 58:9–17

    Article  CAS  Google Scholar 

  • Freeman JL, Persans MW, Nieman K, Albrecht C, Peer W, Pickering IJ, Salt DE (2004) Increased glutathione biosynthesis plays a role in nickel tolerance in Thlaspi nickel hyperaccumulators. Plant Cell Online 16:2176–2191

    Article  CAS  Google Scholar 

  • Fu X, Harberd NP (2003) Auxin promotes Arabidopsis root growth by modulating gibberellin response. Nature 421:740–743

    Article  CAS  PubMed  Google Scholar 

  • Gangwar S, Singh VP, Prasad SM, Maurya JN (2010) Modulation of manganese toxicity in Pisum sativum L. seedlings by kinetin. Sci Horticult 126:467–474

    Article  CAS  Google Scholar 

  • Gangwar S, Singh VP, Tripathi DK, Chauhan DK, Prasad SM, Maurya JN (2014) Plant responses to metal stress: the emerging role of plant growth hormones in toxicity alleviation. In: Ahmad P, Rasool S (eds) Emerging technologies and management of crop stress tolerance. Academic, Tokyo, pp 215–248

    Chapter  Google Scholar 

  • George EF, Hall MA, De Klerk GJ (2008) Plant growth regulators I: introduction; auxins, their analogues and inhibitors. In: George EF, Hall MA, De Klerk GJ (eds) Plant propagation by tissue culture. Springer, Dordrecht, pp 175–204

    Google Scholar 

  • Gill SS, Tuteja N (2010a) Polyamines and abiotic stress tolerance in plants. Plant Signal Behav 5:26–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gill SS, Tuteja N (2010b) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  PubMed  Google Scholar 

  • Gill SS, Hasanuzzaman M, Nahar K, Macovei A, Tuteja N (2013) Importance of nitric oxide in cadmium stress tolerance in crop plants. Plant Physiol Biochem 63:254–261

    Article  CAS  PubMed  Google Scholar 

  • Grace SC, Logan BA (2000) Energy dissipation and radical scavenging by the plant phenylpropanoid pathway. Philos Trans R Soc Lond B Biol Sci 355:1499–1510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Groppa MAD, Tomaro MAL, Benavides MAP (2001) Polyamines as protectors against cadmium or copper-induced oxidative damage in sunflower leaf discs. Plant Sci 161:481–488

    Article  CAS  Google Scholar 

  • Guo B, Liang Y, Zhu Y (2009) Does salicylic acid regulate antioxidant defense system, cell death, cadmium uptake and partitioning to acquire cadmium tolerance in rice? Int J Plant Physiol 166:20–31

    Article  CAS  Google Scholar 

  • Gururani MA, Mohanta TK, Bae H (2015) Current understanding of the interplay between phytohormones and photosynthesis under environmental stress. Int J Mol Sci 16:19055–19085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ha S, Vankova R, Yamaguchi-Shinozaki K, Shinozaki K, Tran LSP (2012) Cytokinins: metabolism and function in plant adaptation to environmental stresses. Trends Plant Sci 17:172–179

    Article  CAS  PubMed  Google Scholar 

  • Han RM, Lefevre I, Albacete A, Perez-Alfocea F, Barba-Espin G, Diaz-Vivancos P, Quinet M, Ruan CJ, Hernández JA, Cantero-Navarro E, Lutts S (2013a) Antioxidant enzyme activities and hormonal status in response to Cd stress in the wetland halophyte Kosteletzkya virginica under saline conditions. Physiol Plant 147:352–368

    Article  CAS  PubMed  Google Scholar 

  • Han Y, Chaouch S, Mhamdi A, Queval G, Zechmann B, Noctor G (2013b) Functional analysis of Arabidopsis mutants points to novel roles for glutathione in coupling H2O2 to activation of salicylic acid accumulation and signaling. Antioxid Redox Signal 18:2106–2121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harfouche A, Meilan R, Altman A (2014) Molecular and physiological responses to abiotic stress in forest trees and their relevance to tree improvement. Tree Physiol 34:1181–1198

    Article  CAS  PubMed  Google Scholar 

  • Hasan SA, Hayat S, Ahmad A (2011) Brassinosteroids protect photosynthetic machinery against the cadmium induced oxidative stress in two tomato cultivars. Chemosphere 84:1446–1451

    Article  CAS  PubMed  Google Scholar 

  • Hayat S, Ali B, Hasan SA, Ahmad A (2007) Brassinosteroid enhanced the level of antioxidants under cadmium stress in Brassica juncea. Environ Exp Bot 60:33–41

    Article  CAS  Google Scholar 

  • Hayat S, Hayat Q, Alyemeni MN, Ahmad A (2013) Proline enhances antioxidative enzyme activity, photosynthesis and yield of Cicer arietinum L. exposed to cadmium stress. Acta Bot Croat 72:323–335

    Article  CAS  Google Scholar 

  • Herbette S, Taconnat L, Hugouvieux V, Piette L, Magniette ML, Cuine S, Auroy P, Richaud P, Forestier C, Bourguignon J, Renou JP (2006) Genome-wide transcriptome profiling of the early cadmium response of Arabidopsis roots and shoots. Biochimie 88:1751–1765

    Article  CAS  PubMed  Google Scholar 

  • Hinsinger P, Plassard C, Tang C, Jaillard B (2003) Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints: a review. Plant Soil 248:43–59

    Article  CAS  Google Scholar 

  • Hossain MA, Asada K (1984) Purification of dehydroascorbate reductase from spinach and its characterization as a thiol enzyme. Plant Cell Physiol 25:85–92

    CAS  Google Scholar 

  • Hsu YT, Kao CH (2007) Cadmium-induced oxidative damage in rice leaves is reduced by polyamines. Plant Soil 291:27–37

    Article  CAS  Google Scholar 

  • Hu X, Jiang M, Zhang A, Lu J (2005) Abscisic acid-induced apoplastic H2O2 accumulation up-regulates the activities of chloroplastic and cytosolic antioxidant enzymes in maize leaves. Planta 223:57

    Article  CAS  PubMed  Google Scholar 

  • Iglesias MJ, Terrile MC, Bartoli CG, D’Ippólito S, Casalongué CA (2010) Auxin signaling participates in the adaptative response against oxidative stress and salinity by interacting with redox metabolism in Arabidopsis. Plant Mol Biol 74:215–222

    Article  CAS  PubMed  Google Scholar 

  • Jaleel CA, Riadh K, Gopi R, Manivannan P, Ines J, Al-Juburi HJ, Chang-Xing Z, Hong-Bo S, Panneerselvam R (2009) Antioxidant defense responses: physiological plasticity in higher plants under abiotic constraints. Acta Physiol Plant 31:427–436

    Article  CAS  Google Scholar 

  • Janas KM, Amarowicz R, Zielińska-Tomaszewska J, Kosińska A, Posmyk MM (2009) Induction of phenolic compounds in two dark-grown lentil cultivars with different tolerance to copper ions. Acta Physiol Plant 31:587–595

    Article  CAS  Google Scholar 

  • Jiang M, Zhang J (2001) Effect of abscisic acid on active oxygen species, antioxidative defence system and oxidative damage in leaves of maize seedlings. Plant Cell Physiol 42:1265–1273

    Article  CAS  PubMed  Google Scholar 

  • Jonak C, Ökrész L, Bögre L, Hirt H (2002) Complexity, cross talk and integration of plant MAP kinase signalling. Curr Opin Plant Biol 5:415–424

    Article  CAS  PubMed  Google Scholar 

  • Jumali SS, Said IM, Ismail I, Zainal Z (2011) Genes induced by high concentration of salicylic acid in Mitragyna speciosa. Aust Int J Crop Sci 5:296

    CAS  Google Scholar 

  • Kagan V, Fabisiak J, Quinn P (2000) Coenzyme Q and vitamin E need each other as antioxidants. Protoplasma 214:11–18

    Article  CAS  Google Scholar 

  • Kang SM, Khan AL, Waqas M, You YH, Kim JH, Kim JG, Hamayun M, Lee IJ (2014a) Plant growth-promoting rhizobacteria reduce adverse effects of salinity and osmotic stress by regulating phytohormones and antioxidants in Cucumis sativus. Int J Plant Interact 9:673–682

    Article  CAS  Google Scholar 

  • Kang SM, Radhakrishnan R, Khan AL, Kim MJ, Park JM, Kim BR, Shin DH, Lee IJ (2014b) Gibberellin secreting rhizobacterium, Pseudomonas putida H-2-3 modulates the hormonal and stress physiology of soybean to improve the plant growth under saline and drought conditions. Plant Physiol Biochem 84:115–124

    Article  CAS  PubMed  Google Scholar 

  • Kazemi N, Khavari-Nejad RA, Fahimi H, Saadatmand S, Nejad-Sattari T (2010) Effects of exogenous salicylic acid and nitric oxide on lipid peroxidation and antioxidant enzyme activities in leaves of Brassica napus L. under nickel stress. Sci Horticult 126:402–407

    Article  CAS  Google Scholar 

  • Keramat B, Kalantari KM, Arvin MJ (2009) Effects of methyl jasmonate in regulating cadmium induced oxidative stress in soybean plant (Glycine max L.). Afr Int J Microbiol Res 3:240–244

    CAS  Google Scholar 

  • Khan MIR, Khan NA (2014) Ethylene reverses photosynthetic inhibition by nickel and zinc in mustard through changes in PS II activity, photosynthetic nitrogen use efficiency, and antioxidant metabolism. Protoplasma 251:1007–1019

    Article  CAS  PubMed  Google Scholar 

  • Khan AL, Waqas M, Hussain J, Al-Harrasi A, Lee IJ (2014) Fungal endophyte Penicillium janthinellum LK5 can reduce cadmium toxicity in Solanum lycopersicum (Sitiens and Rhe). Biol Fertil Soils 50:75–85

    Article  CAS  Google Scholar 

  • Kirillova I, Evsyunina A, Puzina T, Korableva N (2003) Effects of Ambiol and 2-chlorethylphosphonic acid on the content of phytohormones in potato leaves and tubers. Appl Biochem Microbiol 39:210–214

    Article  CAS  Google Scholar 

  • Korableva N, Platonova T, Dogonadze M, Evsunina A (2002) Brassinolide effect on growth of apical meristems, ethylene production, and abscisic acid content in potato tubers. Biol Plant 45:39–43

    Article  CAS  Google Scholar 

  • Krishnamurthy A, Rathinasabapathi B (2013) Auxin and its transport play a role in plant tolerance to arsenite-induced oxidative stress in Arabidopsis thaliana. Plant Cell Environ 36:1838–1849

    Article  CAS  PubMed  Google Scholar 

  • Lal N (2010) Molecular mechanisms and genetic basis of heavy metal toxicity and tolerance in plants. In: Ashraf M, Ozturk M, Ahmad MSA (eds) Plant adaptation and phytoremediation. Springer, Dordrecht, pp 35–58

    Chapter  Google Scholar 

  • Larson RA (1988) The antioxidants of higher plants. Phytochemistry 27:969–978

    Article  CAS  Google Scholar 

  • Laspina N, Groppa M, Tomaro M, Benavides M (2005) Nitric oxide protects sunflower leaves against Cd-induced oxidative stress. Plant Sci 169:323–330

    Article  CAS  Google Scholar 

  • Lee SH, Ahsan N, Lee KW, Kim DH, Lee DG, Kwak SS, Kwon SY, Kim TH, Lee BH (2007) Simultaneous overexpression of both CuZn superoxide dismutase and ascorbate peroxidase in transgenic tall fescue plants confers increased tolerance to a wide range of abiotic stresses. Int J Plant Physiol 164:1626–1638

    Article  CAS  Google Scholar 

  • Li WJ, Feng H, Fan JH, Zhang RQ, Zhao NM, Liu JY (2000) Molecular cloning and expression of a phospholipid hydroperoxide glutathione peroxidase homolog in Oryza sativa. Biochim Biophys Acta (BBA) Gene Struct Express 1493:225–230

    Article  CAS  Google Scholar 

  • Li G, Peng X, Wei L, Kang G (2013) Salicylic acid increases the contents of glutathione and ascorbate and temporally regulates the related gene expression in salt-stressed wheat seedlings. Gene 529:321–325

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Huertas E, Charlton WL, Johnson B, Graham IA, Baker A (2000) Stress induces peroxisome biogenesis genes. EMBO J 19:6770–6777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maheshwari R, Dubey R (2009) Nickel-induced oxidative stress and the role of antioxidant defence in rice seedlings. Plant Growth Regul 59:37–49

    Article  CAS  Google Scholar 

  • Maksymiec W, Wianowska D, Dawidowicz AL, Radkiewicz S, Mardarowicz M, Krupa Z (2005) The level of jasmonic acid in Arabidopsis thaliana and Phaseolus coccineus plants under heavy metal stress. Int J Plant Physiol 162:1338–1346

    Article  CAS  Google Scholar 

  • Manara A (2012) Plant responses to heavy metal toxicity. In: Furini A (ed) Plants and heavy metals. Springer, Dordrecht, pp 27–53

    Chapter  Google Scholar 

  • Marrs KA (1996) The functions and regulation of glutathione S-transferases in plants. Annu Rev Plant Biol 47:127–158

    Article  CAS  Google Scholar 

  • Masood A, Iqbal N, Khan NA (2012) Role of ethylene in alleviation of cadmium-induced photosynthetic capacity inhibition by sulphur in mustard. Plant Cell Environ 35:524–533

    Article  CAS  PubMed  Google Scholar 

  • Mhamdi A, Han Y, Noctor G (2013) Glutathione-dependent phytohormone responses: teasing apart signaling and antioxidant functions. Plant Signal Behav 8:e24181

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Michalak A (2006) Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress. Pol Int J Environ Stud 15:523–530

    CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  CAS  PubMed  Google Scholar 

  • Moubayidin L, Di Mambro R, Sabatini S (2009) Cytokinin–auxin crosstalk. Trends Plant Sci 14:557–562

    Article  CAS  PubMed  Google Scholar 

  • Muller M, Munne-Bosch S (2015) Ethylene response factors: a key regulatory hub in hormone and stress signaling. Plant Physiol 169:32–41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mullineaux PM, Rausch T (2005) Glutathione, photosynthesis and the redox regulation of stress-responsive gene expression. Photosynth Res 86:459–474

    Article  CAS  PubMed  Google Scholar 

  • Neill SJ, Desikan R, Clarke A, Hurst RD, Hancock JT (2002) Hydrogen peroxide and nitric oxide as signalling molecules in plants. Int J Exp Bot 53:1237–1247

    Article  CAS  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Biol 49:249–279

    Article  CAS  Google Scholar 

  • Orozco-Cárdenas ML, Ryan CA (2002) Nitric oxide negatively modulates wound signaling in tomato plants. Plant Physiol 130:487–493

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pereira A (2016) Plant abiotic stress challenges from the changing environment. Front Plant Sci 7:1123

    PubMed  PubMed Central  Google Scholar 

  • Pierik R, Tholen D, Poorter H, Visser EJ, Voesenek LA (2006) The Janus face of ethylene: growth inhibition and stimulation. Trends Plant Sci 11:176–183

    Article  CAS  PubMed  Google Scholar 

  • Piotrowska-Niczyporuk A, Bajguz A (2014) The effect of natural and synthetic auxins on the growth, metabolite content and antioxidant response of green alga Chlorella vulgaris (Trebouxiophyceae). Plant Growth Regul 73:57–66

    Article  CAS  Google Scholar 

  • Poonam S, Kaur H, Geetika S (2013) Effect of jasmonic acid on photosynthetic pigments and stress markers in Cajanus cajan (L.) Millsp. seedlings under copper stress. Am Int J Plant Sci 4:817–823

    Article  CAS  Google Scholar 

  • Qadir S, Qureshi M, Javed S, Abdin M (2004) Genotypic variation in phytoremediation potential of Brassica juncea cultivars exposed to Cd stress. Plant Sci 167:1171–1181

    Article  CAS  Google Scholar 

  • Radhakrishnan R, Lee IJ (2013) Spermine promotes acclimation to osmotic stress by modifying antioxidant, abscisic acid, and jasmonic acid signals in soybean. Int J Plant Growth Regul 32:22–30

    Article  CAS  Google Scholar 

  • Radhakrishnan R, Khan AL, Lee IJ (2013) Endophytic fungal pre-treatments of seeds alleviates salinity stress effects in soybean plants. Int J Microbiol 51:850–857

    CAS  Google Scholar 

  • Rai V, Khatoon S, Bisht S, Mehrotra S (2005) Effect of cadmium on growth, ultramorphology of leaf and secondary metabolites of Phyllanthus amarus Schum. and Thonn. Chemosphere 61:1644–1650

    Article  CAS  PubMed  Google Scholar 

  • Raman V, Ravi S (2010) Effect of salicylic acid and methyl jasmonate on antioxidant systems of Haematococcus pluvialis. Acta Physiol Plant 33:1043–1049

    Article  CAS  Google Scholar 

  • Ramel F, Birtic S, Cuiné S, Triantaphylidès C, Ravanat JL, Havaux M (2012) Chemical quenching of singlet oxygen by carotenoids in plants. Plant Physiol 158:1267–1278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rizwan M, Ali S, Adrees M, Rizvi H, Zia-ur-Rehman M, Hannan F, Qayyum MF, Hafeez F, Ok YS (2016) Cadmium stress in rice: toxic effects, tolerance mechanisms, and management: a critical review. Environ Sci Pollut Res 23:17859–17879

    Article  CAS  Google Scholar 

  • Rodríguez-Serrano M, Romero-Puertas MC, Zabalza A, Corpas FJ, Gómez M, Del Rio LA, Sandalio LM (2006) Cadmium effect on oxidative metabolism of pea (Pisum sativum L.) roots. Imaging of reactive oxygen species and nitric oxide accumulation in vivo. Plant Cell Environ 29:1532–1544

    Article  PubMed  CAS  Google Scholar 

  • Roxas VP, Lodhi SA, Garrett DK, Mahan JR, Allen RD (2000) Stress tolerance in transgenic tobacco seedlings that overexpress glutathione S-transferase/glutathione peroxidase. Plant Cell Physiol 41:1229–1234

    Article  CAS  PubMed  Google Scholar 

  • Saeidi-Sar S, Khavari-Nejad R, Fahimi H, Ghorbanli M, Majd A (2007) Interactive effects of gibberellin A 3 and ascorbic acid on lipid peroxidation and antioxidant enzyme activities in Glycine max seedlings under nickel stress. Russ Int J Plant Physiol 54:74–79

    Article  CAS  Google Scholar 

  • Sakamoto A, Okumura T, Kaminaka H, Sumi K, Tanaka K (1995) Structure and differential response to abscisic acid of two promoters for the cytosolic copper/zinc superoxide dismutase genes, SodCcl and SodCc2, in rice protoplasts. FEBS Lett 358:62–66

    Article  CAS  PubMed  Google Scholar 

  • Sandorf I, Holländer-Czytko H (2002) Jasmonate is involved in the induction of tyrosine aminotransferase and tocopherol biosynthesis in Arabidopsis thaliana. Planta 216:173–179

    Article  CAS  PubMed  Google Scholar 

  • Sasaki-Sekimoto Y, Taki N, Obayashi T, Aono M, Matsumoto F, Sakurai N, Suzuki H, Hirai MY, Noji M, Saito K, Masuda T (2005) Coordinated activation of metabolic pathways for antioxidants and defence compounds by jasmonates and their roles in stress tolerance in Arabidopsis. Plant J 44:653–668

    Article  CAS  PubMed  Google Scholar 

  • Scheller HV, Huang B, Hatch E, Goldsbrough PB (1987) Phytochelatin synthesis and glutathione levels in response to heavy metals in tomato cells. Plant Physiol 85:1031–1035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schutzendubel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. Int J Exp Bot 53:1351–1365

    CAS  Google Scholar 

  • Sethy SK, Ghosh S (2013) Effect of heavy metals on germination of seeds. Int J Nat Sci Biol Med 4:272–275

    Article  CAS  Google Scholar 

  • Shah FUR, Ahmad N, Masood KR, Peralta-Videa JR (2010) Heavy metal toxicity in plants. In: Ashraf M, Ozturk M, Ahmad MSA (eds) Plant adaptation phytoremediation. Springer, Dordrecht, pp 71–97

    Chapter  Google Scholar 

  • Sharaf A, Farghal II, Sofy MR (2009) Role of gibberellic acid in abolishing the detrimental effects of Cd and Pb on broad bean and Lupin plants. Res Int J Agric Biol Sci 5:668–673

    CAS  Google Scholar 

  • Sharma P, Dubey R (2007) Involvement of oxidative stress and role of antioxidative defense system in growing rice seedlings exposed to toxic concentrations of aluminum. Plant Cell Rep 26:2027–2038

    Article  CAS  PubMed  Google Scholar 

  • Sharma I, Pati PK, Bhardwaj R (2011) Effect of 28-homobrassinolide on antioxidant defence system in Raphanus sativus L. under chromium toxicity. Ecotoxicology 20:862–874

    Article  CAS  PubMed  Google Scholar 

  • Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Int J Bot 2012:217037. https://doi.org/10.1155/2012/217037

    Article  CAS  Google Scholar 

  • Shigeoka S, Ishikawa T, Tamoi M, Miyagawa Y, Takeda T, Yabuta Y, Yoshimura K (2002) Regulation and function of ascorbate peroxidase isoenzymes. Int J Exp Bot 53:1305–1319

    Article  CAS  Google Scholar 

  • Siddiqui MH, Al-Whaibi MH, Basalah MO (2011a) Interactive effect of calcium and gibberellin on nickel tolerance in relation to antioxidant systems in Triticum aestivum L. Protoplasma 248:503–511

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui MH, Al-Whaibi MH, Basalah MO (2011b) Role of nitric oxide in tolerance of plants to abiotic stress. Protoplasma 248:447–455

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Prasad SM (2014) Growth, photosynthesis and oxidative responses of Solanum melongena L. seedlings to cadmium stress: mechanism of toxicity amelioration by kinetin. Sci Horticult 176:1–10

    Article  CAS  Google Scholar 

  • Singh S, Parihar P, Singh R, Singh VP, Prasad SM (2015) Heavy metal tolerance in plants: role of transcriptomics, proteomics, metabolomics, and ionomics. Front Plant Sci 6:1143

    PubMed  Google Scholar 

  • Smeets K, Cuypers A, Lambrechts A, Semane B, Hoet P, Van Laere A, Vangronsveld J (2005) Induction of oxidative stress and antioxidative mechanisms in Phaseolus vulgaris after Cd application. Plant Physiol Biochem 43:437–444

    Article  CAS  PubMed  Google Scholar 

  • Synkova H, Semoradova S, Schnablová R, Witters E, Husak M, Valcke R (2006) Cytokinin-induced activity of antioxidant enzymes in transgenic Pssu-ipt tobacco during plant ontogeny. Biol Plant 50:31–41

    Article  CAS  Google Scholar 

  • Tang CF, Liu YG, Zeng GM, Li X, Xu WH, Li CF, Yuan XZ (2005) Effects of exogenous spermidine on antioxidant system responses of Typha latifolia L. under Cd2+ stress. Int J Integr Plant Biol 47:428–434

    Article  CAS  Google Scholar 

  • Tewari RK, Hahn EJ, Paek KY (2008) Modulation of copper toxicity-induced oxidative damage by nitric oxide supply in the adventitious roots of Panax ginseng. Plant Cell Rep 27:171–181

    Article  CAS  PubMed  Google Scholar 

  • Thao NP, Khan MIR, Thu NBA, Hoang XLT, Asgher M, Khan NA, Tran LSP (2015) Role of ethylene and its cross talk with other signaling molecules in plant responses to heavy metal stress. Plant Physiol 169:73–84

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thiruvengadam M, Kim SH, Chung IM (2015) Exogenous phytohormones increase the accumulation of health-promoting metabolites, and influence the expression patterns of biosynthesis related genes and biological activity in Chinese cabbage (Brassica rapa spp. pekinensis). Sci Horticult 193:136–146

    Article  CAS  Google Scholar 

  • Vaishnav A, Jain S, Kasotia A, Kumari S, Gaur RK, Choudhary DK (2013) Effect of nitric oxide signaling in bacterial-treated soybean plant under salt stress. Arch Microbiol 195:571–577

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Liang X, Dong Y, Xu L, Zhang X, Kong J, Liu S (2013) Effects of exogenous salicylic acid and nitric oxide on physiological characteristics of perennial ryegrass under cadmium stress. Int J Plant Growth Regul 32:721–731

    Article  CAS  Google Scholar 

  • Wang H, Dai B, Shu X, Wang H, Ning P (2015) Effect of kinetin on physiological and biochemical properties of maize seedlings under arsenic stress. Adv Mater Sci Eng 714646

    Google Scholar 

  • Wani SH, Kumar V, Shriram V, Sah SK (2016) Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants. Crop J 4:162–176

    Article  Google Scholar 

  • Waqas M, Khan AL, Kang SM, Kim YH, Lee IJ (2014) Phytohormone-producing fungal endophytes and hardwood-derived biochar interact to ameliorate heavy metal stress in soybeans. Biol Fertil Soils 50:1155–1167

    Article  CAS  Google Scholar 

  • Wendehenne D, Durner J, Klessig DF (2004) Nitric oxide: a new player in plant signalling and defence responses. Curr Opin Plant Biol 7:449–455

    Article  CAS  PubMed  Google Scholar 

  • Wigoda N, Ben-Nissan G, Granot D, Schwartz A, Weiss D (2006) The gibberellin-induced, cysteine-rich protein GIP2 from Petunia hybrida exhibits in planta antioxidant activity. Plant J 48:796–805

    Article  CAS  PubMed  Google Scholar 

  • Williams JR, Pillay AE (2011) Metals, metalloids and toxicity in date palms: potential environmental impact. Int J Environ Protect 2:592–600

    Article  CAS  Google Scholar 

  • Xia XJ, Wang YJ, Zhou YH, Tao Y, Mao WH, Shi K, Asami T, Chen Z, Yu JQ (2009) Reactive oxygen species are involved in brassinosteroid-induced stress tolerance in cucumber. Plant Physiol 150:801–814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiang C, Oliver DJ (1998) Glutathione metabolic genes coordinately respond to heavy metals and jasmonic acid in Arabidopsis. Plant Cell 10:1539–1550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiang C, Werner BL, E’Lise MC, Oliver DJ (2001) The biological functions of glutathione revisited in Arabidopsis transgenic plants with altered glutathione levels. Plant Physiol 126:564–574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu J, Wang W, Yin H, Liu X, Sun H, Mi Q (2010) Exogenous nitric oxide improves antioxidative capacity and reduces auxin degradation in roots of Medicago truncatula seedlings under cadmium stress. Plant Soil 326:321

    Article  CAS  Google Scholar 

  • Yan Z, Chen J, Li X (2013) Methyl jasmonate as modulator of Cd toxicity in Capsicum frutescens var. fasciculatum seedlings. Ecotoxicol Environ Saf 98:203–209

    Article  CAS  PubMed  Google Scholar 

  • Yang CW, Wang J, Kao C (2000) The relation between accumulation of abscisic acid and proline in detached rice leaves. Biol Plant 43:301–304

    Article  CAS  Google Scholar 

  • Yuan HM, Liu WC, Jin Y, Lu YT (2013) Role of ROS and auxin in plant response to metal-mediated stress. Plant Signal Behav 8:e24671

    Article  PubMed  PubMed Central  Google Scholar 

  • Zeng J, Zhang M, Sun X (2013) Molecular hydrogen is involved in phytohormone signaling and stress responses in plants. PLoS One 8:e71038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang A, Jiang M, Zhang J, Tan M, Hu X (2006) Mitogen-activated protein kinase is involved in abscisic acid-induced antioxidant defense and acts downstream of reactive oxygen species production in leaves of maize plants. Plant Physiol 141:475–487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Zhang H, Quan R, Wang XC, Huang R (2009) Transcriptional regulation of the ethylene response factor LeERF2 in the expression of ethylene biosynthesis genes controls ethylene production in tomato and tobacco. Plant Physiol 150:365–377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang A, Zhang J, Zhang J, Ye N, Zhang H, Tan M, Jiang M (2010) Nitric oxide mediates brassinosteroid-induced ABA biosynthesis involved in oxidative stress tolerance in maize leaves. Plant Cell Physiol 52:181–192

    Article  PubMed  CAS  Google Scholar 

  • Zhang F, Zhang H, Xia Y, Wang G, Xu L, Shen Z (2011) Exogenous application of salicylic acid alleviates cadmium toxicity and reduces hydrogen peroxide accumulation in root apoplasts of Phaseolus aureus and Vicia sativa. Plant Cell Rep 30:1475–1483

    Article  CAS  PubMed  Google Scholar 

  • Zhao H, Yang H (2008) Exogenous polyamines alleviate the lipid peroxidation induced by cadmium chloride stress in Malus hupehensis Rehd. Sci Hortic 116:442–447

    Article  CAS  Google Scholar 

  • Zhou ZS, Guo K, Elbaz AA, Yang ZM (2009) Salicylic acid alleviates mercury toxicity by preventing oxidative stress in roots of Medicago sativa. Environ Exp Bot 65:27–34

    Article  CAS  Google Scholar 

  • Zhu XF, Jiang T, Wang ZW, Lei GJ, Shi YZ, Li GX, Zheng SJ (2012) Gibberellic acid alleviates cadmium toxicity by reducing nitric oxide accumulation and expression of IRT1 in Arabidopsis thaliana. Int J Hazard Mater 239:302–307

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khan, D.A. et al. (2018). Role of Phytohormones in Enhancing Antioxidant Defense in Plants Exposed to Metal/Metalloid Toxicity. In: Hasanuzzaman, M., Nahar, K., Fujita, M. (eds) Plants Under Metal and Metalloid Stress. Springer, Singapore. https://doi.org/10.1007/978-981-13-2242-6_14

Download citation

Publish with us

Policies and ethics