Skip to main content

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAPPLSCIENCES))

Abstract

This paper outlines the methods of spline and outlines the best tools and their features for signal processing and analysis. An extensive analysis of existing hardware intended for digital processing indicated that architecture and availability of hardware implemented special multiplication special multiplication commands, parallel accumulative multiplication at Harvard could allow wide use of modern digital signal processors for implementation of spline-recovery methods. MATLAB instrumental tools help in accelerating the application development process due to tools like language for working with matrixes, visual modelling and automatic generation of the software code, and various other packages that offer different knowledge inputs in a single environment. MATLAB’s powerful and easy-to-use language for matrix computations provides a natural representation for signals; thus, it is highly applicable in digital processing of signals. Additional packages of applied MATLAB (toolboxes) and Simulink blocks are the richest sources of premade functions for further extension, basic blocks for construction of models and visual tools visually working with signals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Y.-M. Wnag, L. Ren, G. Ao, Z. Sun, H. Zhang, A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications. J. Comput. Phys. 259, 33–50 (2014)

    Article  MathSciNet  Google Scholar 

  2. A.A. Alikhanov, A new difference scheme for the time fractional diffusion equation. J. Comput. Phys. 280, 424–438 (2015)

    Article  MathSciNet  Google Scholar 

  3. H. Zhang, X. Yang, D. Xu, A high-order numerical method for solving the 2D fourth order reaction-diffusion equation. Numer. Algorithms 1–29 (2018)

    Google Scholar 

  4. C.P. Li, R.F. Wu, H.F. Ding, High-order approximation to Caputo derivative and Caputo-type advection-diffusion equations. Commun. Appl. Ind. Math. 6(2), e-536 (2014)

    Google Scholar 

  5. H. Li, J. Cao, C. Li, High-order approximation to Caputo derivatives and Caputo-type advection-diffusion equations (III). J. Comput. Appl. Math. 299, 159–175 (2016)

    Article  MathSciNet  Google Scholar 

  6. C. Lv, C. Xu, Error analysis of a high order method for time-fractional diffusion equations. SIAM J. Sci. Comput. 38, A2699–A2724 (2016)

    Article  MathSciNet  Google Scholar 

  7. Z.Q. Li, Y.B. Yan, N.J. Ford, Error estimates of a high order numerical method for solving linear fractional differential equations. Appl. Numer. Math. 114, 201–220 (2016)

    Article  MathSciNet  Google Scholar 

  8. Y.B. Yan, K. Pal, N.J. Ford, Higher order numerical methods for solving fractional differential equations. BIT Numer. Math. 54, 555–584 (2014)

    Article  MathSciNet  Google Scholar 

  9. M. Dehghan, M. Abbaszadeh, Two meshless procedures: moving Kriging interpolation and element-free Galerkin for fractional PDEs. Appl. Anal. 96, 936–969 (2017)

    Article  MathSciNet  Google Scholar 

  10. M. Dehghan, M. Abbaszadeh, Element free Galerkin approach based on the reproducing kernel particle method for solving 2D fractional Tricomi-type equation with Robin boundary condition. Comput. Math. Appl. 73, 1270–1285 (2017)

    Article  MathSciNet  Google Scholar 

  11. X. Yang, H. Zhang, D. Xu, J. Sci. Comput. (2018). https://doi.org/10.1007/s10915-018-0672-3

    Article  MathSciNet  Google Scholar 

  12. B. Jin, R. Lazarov, J. Pasciak, Z. Zhou, Error analysis of semidiscrete finite element methods for inhomogeneous time-fractional diffusion. IMA J. Numer. Anal. 35, 561–582 (2015)

    Article  MathSciNet  Google Scholar 

  13. B. Jin, R. Lazarov, Y. Liu, Z. Zhou, The Galerkin finite element method for a multi-term time-fractional diffusion equation. J. Comput. Phys. 281, 825–843 (2015)

    Article  MathSciNet  Google Scholar 

  14. W. McLean, K. Mustapha, Time-stepping error bounds for fractional diffusion problems with non-smooth initial data. J. Comput. Phys. 293, 201–217 (2015)

    Article  MathSciNet  Google Scholar 

  15. Z. Wang, S. Vong, Compact difference schemes for the modified anomalous fractional sub-diffusion equation and the fractional diffusion-wave equation. J. Comput. Phys. 277, 1–15 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dhananjay Singh .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, D., Singh, M., Hakimjon, Z. (2019). Evaluation Methods of Spline. In: Signal Processing Applications Using Multidimensional Polynomial Splines. SpringerBriefs in Applied Sciences and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-13-2239-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-2239-6_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-2238-9

  • Online ISBN: 978-981-13-2239-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics