Skip to main content

Parabolic Splines based One-Dimensional Polynomial

  • Chapter
  • First Online:
Book cover Signal Processing Applications Using Multidimensional Polynomial Splines

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAPPLSCIENCES))

Abstract

Chapter 1 mentioned that the functions that are glued from various pieces of polynomials on a fixed system are called splines. The obtained smooth homogeneous structure piecewise-polynomial functions (compilation from polynomials of the same degree) are called spline functions or simply splines. The broken spline function is the simplest and historical example of splines. Spline functions are a developing field of the function approximation and digital analysis theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Antonelli, C. Beccari, G. Casciola, A general framework for the construction of piecewise-polynomial local interpolants of minimum degree. Adv. Comput. Math. (2013). https://doi.org/10.1007/s10444-013-9335-y

    Article  MathSciNet  Google Scholar 

  2. C.V. Beccari, G. Casciola, S. Morigi, On multi-degree splines. Comput. Aided Geom. Des. 58 (2017). https://doi.org/10.1016/j.cagd.2017.10.003

    Article  MathSciNet  Google Scholar 

  3. F. Johnson, M.F. Hutchinson, C. The, C. Beesley, J. Green, Topographic relationships for design rainfalls over Australia. J. Hydrol. 533, 439–451 (2016). ISSN 0022-1694, https://doi.org/10.1016/j.jhydrol.2015.12.035

    Article  Google Scholar 

  4. S. Reboul, M. Benjelloun, Fusion of Piecewise Stationary Process.(2002). https://www.researchgate.net/profile/S_Reboul/publication/254461483_Fusion_of_piecewise_stationary_process/links/540eac620cf2f2b29a3a923d.pdf?origin=publication_detail

  5. D. Singh, H. Zaynidinov, H.J. Lee, Piecewise-quadratic Harmut basis funictions and their application to problem in digital signal processing. Int. J. Commun. Syst. 23, 751–762 (2010). (www.interscience.wiley.com). https://doi.org/10.1002/dac.1093

  6. W. Wang, Special quadratic quadrilateral finite elements for local refinement with irregular nodes. Comput. Methods Appl. Mech. Eng. 182(1–2), 109–134 (2000). ISSN 0045-7825. https://doi.org/10.1016/S0045-7825(99)00088-2

    Article  MathSciNet  Google Scholar 

  7. Y.V. Zakharov, T. Tozer, Local spline approximation of time-varying channel model. Electron. Lett. 37, 1408–1409 (2001). https://doi.org/10.1049/el:20010942

    Article  Google Scholar 

  8. B.I. Kvasov, Parabolic B-splines in interpolation problems. USSR Comput. Math. Math. Phys. 23(2), 13–19 (1983). ISSN 0041-5553. https://doi.org/10.1016/S0041-5553(83)80041-X

    Article  Google Scholar 

  9. S. Gao, Z. Zhang, C. Cao, Differentiation and numerical integral of the cubic spline interpolation. J. Comput. 6(10), 2037–2044 (2011)

    Google Scholar 

  10. T. Blu, M. Unser, Wavelets, fractals, and radial basis functions. IEEE Trans. Signal Process. 50(3), 543–553 (2002)

    Article  MathSciNet  Google Scholar 

  11. Y. Lipman, D. Levin, D. Cohen-Or, Green Coordinates. In ACM SIGGRAPH 2008 papers (SIGGRAPH ’08). ACM, New York, NY, USA, Article 78, 10 pp (2008). https://doi.org/10.1145/1399504.1360677

  12. B. Mohandes, Y.L. Abdelmagid, I. Boiko, Development of PSS tuning rules using multi-objective optimization. Int. J. Electr. Power Energy Syst. 100, 449–462 (2018). ISSN 0142-0615. https://doi.org/10.1016/j.ijepes.2018.01.041

    Article  Google Scholar 

  13. M. Walz, T. Zebrowski, J. Küchenmeister, K. Busch, B-spline modal method: a polynomial approach compared to the Fourier modal method. Opt. Express 21(12), 14683–14697 (2013)

    Article  Google Scholar 

  14. O. Hidayov, D. Singh, B. G.B. Gwak, S-Y. Young, A Simulink-model of specialized processor on the piecewise-polynomial bases. International Conference on Advanced Communication Technology, ICACT (2011)

    Google Scholar 

  15. G. Canan Hazar, M. Ali Sarıgöl, Acta Appl. Math. 154, 153 (2018). https://doi.org/10.1007/s10440-017-0138-x

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dhananjay Singh .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, D., Singh, M., Hakimjon, Z. (2019). Parabolic Splines based One-Dimensional Polynomial. In: Signal Processing Applications Using Multidimensional Polynomial Splines. SpringerBriefs in Applied Sciences and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-13-2239-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-2239-6_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-2238-9

  • Online ISBN: 978-981-13-2239-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics