Skip to main content

Studies on the Spatial Distribution of Radiogenic Elements in the Crystalline Basement Used for the Evaluation of Deep Geothermal Resources in the Southwestern Québec

  • Conference paper
  • First Online:
  • 1964 Accesses

Part of the book series: Environmental Science and Engineering ((ENVENG))

Abstract

Accurate assessment on the subsurface geothermal resources remains challengeable from the scientific point of view. The parameter uncertainties and incomplete knowledge of initial conditions for the subsurface environment make the prediction of subsurface temperature based on the thermal models present a strong uncertainty. Forward modeling of the temperature at depth may be highly dependent on the radiogenic heat production of the geological layers which are affected by the concentration of uranium, thorium and potassium, and density. It shows that the average concentration of uranium, thorium and potassium is 1.78 ppm, 6.01 ppm and 2.64%, with the standard deviation error of 3.57, 7.27 and 1.85 respectively for the selected region in southwestern Quebec. The sequential gaussian simulation (SGS) method was used to obtain the spatial distribution of the radiogenic elements in a selected region with the size of 35 km × 80 km. Using the density values for specific rocks, the distribution of the radiogenic heat production over the study area is also simulated. Results show that the difference between the minimum and the maximum radiogenic heat production value is 30% when considering the difference in density.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Caers J (2005) Petroleum geostatistics. SPE

    Google Scholar 

  • Davidson A (1984) Identification of ductile shear zones in the south-western Grenville Province of the Canadian Shield. In: Kroner A, Greiling R (eds) Precambrian tectonics illustrated: Schweitzerbart’sche Verlagsbuchhandlung, Stuttgart, pp 263–279

    Google Scholar 

  • Delbari M, Afrasiab P, Loiskandl W (2009) Using sequential Gaussian simulation to assess the field-scale spatial uncertainty of soil water content. CATENA 79:163–169

    Article  Google Scholar 

  • Dubrule O (1989) A review of stochastic models for petroleum reservoirs. In: Armstrong M (ed) Quantitative geology and geostatistics. Springer, Dordrecht, pp 493–506

    Chapter  Google Scholar 

  • Dufréchou G, Harris LB, Corriveau L (2014) Tectonic reactivation of transverse basement structures in the Grenville orogeny of SW Quebec, Canada: insights from gravity and aeromagnetic data. Precambr Res 241:61–84

    Article  Google Scholar 

  • Fuchs S, Balling N (2016) Improving the temperature predictions of subsurface thermal models by using high-quality input data. Part 1: uncertainty analysis of the thermal-conductivity parameterization. Geothermics 64:42–54

    Article  Google Scholar 

  • Goovaerts P (1997) Geostatistics for natural resources evaluation. Oxford University Press, New York

    Google Scholar 

  • Lavoie D, Pinet N, Castonguay S, Dietrich J, Giles P, Fowler M, Thériault R, Laliberté JY, St P, Hinds S, Hicks L, Klassen H (2009) Hydrocarbon systems in the Paleozoic basins of eastern Canada-Presentations at the Calgary 2007 workshop. Geol. Surv. Canada Open File 5980:9–79

    Google Scholar 

  • Li, J., Heap, A.D.: A review of spatial interpolation methods for environmental scientists. Geoscience Australia, p. 137. Record 2008/23 (2008)

    Google Scholar 

  • Mareschal JC, Jaupart C (2004) Variations of surface heat flow and lithospheric thermal structure beneath the North American craton. Earth Planet Sci Lett 223:65–77

    Article  Google Scholar 

  • Nadeau L, Brouillette P (1994) Carte structurale de la région de La Tuque (SNRC 31P), Province de Grenville, Québec. Commission Géologique du Canada, dossier public 2938(1):250 000

    Google Scholar 

  • Nadeau L, Brouillette P (1995) Carte structurale de la région de Shawinigan (SNRC 31I), Province de Grenville, Québec. Commission Géologique du Canada, dossier public 3012(1):250 000

    Google Scholar 

  • Remy N, Boucher A, Wu J (2009) Applied Geostatistics with SGeMS: A User’s Guide. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Rivers T (2015) Tectonic setting and evolution of the Grenville orogeny: an assessment of progress over the last 40 years. Geosci Can 42:77–124

    Article  Google Scholar 

  • Rybach L (1976) Radioactive heat production in rocks and its relation to other petrophysical parameters. Pure appl Geophys 114:309–318

    Article  Google Scholar 

  • Sappin AA (2012) Pétrologie et métallogénie d’indices de Ni-Cu-éléments du Groupe du Platine du Domaine de Portneuf-Mauricie, Québec (Canada), Thèse de doctorat at Université Laval, p 70

    Google Scholar 

  • Shumaker RC, Wilson TH (1996) Basement structure of the Appalachian foreland in West Virginia: its style and effect on sedimentation. In: Van der Pluijm BA, Catacosinos PA (eds), Basement and basins of Eastern North America, pp 139–155. Geol Soc Am

    Google Scholar 

  • SIGEOM. http://sigeom.mines.gouv.qc.ca

  • Soltani F, Afzal P, Asghari O (2013) Sequential Gaussian simulation in the Sungun Cu porphyry deposit and comparing the stationary reproduction with ordinary kriging. Univ J Geosci 1(2):106–113

    Google Scholar 

  • Tremblay A, Long B, Massé M (2003) Supracrustal faults of the St. Lawrence rift system, Québec: kinematics and geometry as revealed by field mapping and marine seismic reflection data. Tectonophysics 369:231–252

    Article  Google Scholar 

  • Vidal A, Archer R (2015) Geostatistical simulations of geothermal reservoirs: two-and multiple-point statistic models. In: Proceedings world geothermal congress 2015, Melbourne, Australia

    Google Scholar 

  • Zhao YF, Sun ZY, Chen J (2010) Analysis and comparison in arithmetic for kriging interpolation and sequential gaussian conditional simulation. J Geo-Inf Sci 12(6):767–776

    Google Scholar 

Download references

Acknowledgements

The author acknowledge the support of the CAS Pioneer Hundred Talents Program in China. Besides, special thanks to Bernard Giroux and Erwan Gloaguen at INRS-ETE for their invaluable help in technical support of SGeMS software. Thanks to Aurelie Gicquel for providing some radiogenic elements data in the research region.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hejuan Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, H. (2019). Studies on the Spatial Distribution of Radiogenic Elements in the Crystalline Basement Used for the Evaluation of Deep Geothermal Resources in the Southwestern Québec. In: Zhan, L., Chen, Y., Bouazza, A. (eds) Proceedings of the 8th International Congress on Environmental Geotechnics Volume 3. ICEG 2018. Environmental Science and Engineering(). Springer, Singapore. https://doi.org/10.1007/978-981-13-2227-3_8

Download citation

Publish with us

Policies and ethics