Skip to main content

Modelling the Effects of Thermal Gradient on Microbe Facilitated Mineral Precipitation Kinetics in Subsurface Flow Conditions

  • Conference paper
  • First Online:
Proceedings of the 8th International Congress on Environmental Geotechnics Volume 3 (ICEG 2018)

Part of the book series: Environmental Science and Engineering ((ENVENG))

Included in the following conference series:

Abstract

Deep geological sequestration of anthropogenic carbon dioxide is a plausible way to reduce global greenhouse gas impacts. Long-term containment of sequestered CO2 can be achieved by preventing leakage and by ensuring further entrapments such as solubility-trapping and mineral-trapping. These processes can be enhanced by involving subsurface microbial community that restrict flows by forming biofilms and/favours biomineralization. For example, ureolytic bacteria, Sporosarcina pasteurii, catalyzes urea hydrolysis and accelerate calcite precipitations in presence of dissolved calcium ions. However, subsurface flows and reactions are complex and often involve multiple phases, chemicals and minerals as well as pressure and thermal gradients. These complex coupled behaviours are challenging and limitedly attempted.

Within the scope of an ongoing study, a coupled numerical model has been developed under a THCM framework including subsurface microbial processes and associated bio-geochemical reactions. The model deals with liquid flow, multicomponent gas flows, dissolved chemicals and suspended microbes flows in liquid phase, heat flow, biofilms and minerals growths, mechanical deformations and geochemical/bio-geochemical reactions. In this paper, the coupled microbial model has been used to investigate the effects of thermal gradient on microbial growth and mineral precipitation as well as their overall impacts on the flow properties of the medium.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Appelo CAJ, Postma D (2005) Geochemistry, groundwater and pollution, 2nd edn. A.A. Balkema Publishers, Amsterdam

    Google Scholar 

  • Bethke CM (2008) Geochemical and biogeochemical reaction modelling, 2nd edn. Cambridge University Press, New York

    Google Scholar 

  • Beyenal H, Chen SN, Lewandowski Z (2003) The double substrate growth kinetics of Pseudomonas aeruginosa. Enzyme Microb Technol 32:92–98

    Google Scholar 

  • Birch F, Clark H (1940) The thermal conductivity of rocks and its dependence upon temperature and composition. Am J Sci 238(8):529–558

    Google Scholar 

  • De Muynck W, De Belie N, Verstraete W (2010) Microbial carbonate precipitation in construction materials: a review. Ecol Eng 36(2):118–136

    Google Scholar 

  • Eppelbaum L, Kutasov I, Pilchin A (2014) Thermal properties of rocks and density of fluids. In: Applied geothermics. Lecture notes in earth system sciences. Springer, Heidelberg, pp 99–149

    Google Scholar 

  • Jacobs GK, Kerrick DM, Krupka KM (1981) The high-temperature heat capacity of natural calcite (CaCO3). Phys Chem Miner 7(2):55–59

    Google Scholar 

  • Kovářová K, Zehnder AJB, Egli T (1996) Temperature-dependent growth kinetics of escherichia coli ML 30 in glucose-limited continuous culture. J Bacteriol 178(15):4530–4539

    Google Scholar 

  • Lopez O, Zuddas P, Faivre D (2009) The influence of temperature and seawater composition on calcite crystal growth mechanisms and kinetics: implications for Mg incorporation in calcite lattice. Geochimia et Cosmochimia Acta 73:337–347

    Google Scholar 

  • Masum SA, Thomas HR (2018) Modelling coupled microbial processes in the subsurface: model development, verification, evaluation and application. Adv Water Resour 116:1–17

    Google Scholar 

  • Mitchell AC, Ferris FG (2005) The coprecipitation of Sr into calcite precipitates induced by bacterial ureolysis in artificial groundwater: temperature and kinetic dependence. Geochimia et Cosmochimia Acta 69(17):4199–4210

    Google Scholar 

  • Mitchell AC, Dideriksen K, Spangler LH, Cunningham AB, Gerlach R (2010) Microbially enhanced carbon capture and storage by mineral-trapping and solubility-trapping. Environ Sci Technol 44:5270–5276

    Google Scholar 

  • Parkhurst DL, Appelo CAJ (1999) User’s guide to PHREEQC (version 2). United States Geological Survey, USA

    Google Scholar 

  • Peyton BM (1995) Effects of shear stress and substrate loading rate on Pseudomonas aeruginosa biofilm thickness and density. Water Res 30(1):29–36

    Google Scholar 

  • Ratkowsky DA, Lowry RK, McMeekin TA, Stokes AN, Chandler RE (1983) Model for bacterial culture growth rate throughout the entire biokinetic temperature range. J Bacteriol 154(3):1222–1226

    Google Scholar 

  • Stumm W, Morgan JJ (1996) Aquatic chemistry, 3rd edn. Wiley, New York

    Google Scholar 

  • Taylor SW, Jaffé PR (1990) Substrate and biomass transport in a porous medium. Water Resour Res 26(9):2181–2194

    Google Scholar 

  • Thomas HR, Vardon PJ, Cleall PJ (2013) Three-dimensional behaviour of a prototype radioactive waste repository in fractured granitic rock. Can Geotech J 51(3):246–259

    Google Scholar 

  • Zhang T, Klapper I (2010) Mathematical model of biofilm induced calcite precipitation. Water Sci Technol 61(11):2957–2964

    Google Scholar 

  • Zwietering MH, De Koos JT, Hasenack BE, De Wit JC, van’t Riet K (1991) Modelling of bacterial growth as a function of temperature. Appl Environ Microbiol 57(4):1094–1101

    Google Scholar 

  • PHREEQC Homepage. https://wwwbrr.cr.usgs.gov/pro-jects/GWC_coupled/phreeqc/. Accessed 10 Apr 2018

Download references

Acknowledgment

Funding to support this research was provided by Welsh Government and HEFCW through Ser Cymru National Research Network for Low Carbon, Energy and the Environment (NRN-LCEE) via Geo-Carb-Cymru Cluster.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shakil A. Masum .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Masum, S.A., Thomas, H.R. (2019). Modelling the Effects of Thermal Gradient on Microbe Facilitated Mineral Precipitation Kinetics in Subsurface Flow Conditions. In: Zhan, L., Chen, Y., Bouazza, A. (eds) Proceedings of the 8th International Congress on Environmental Geotechnics Volume 3. ICEG 2018. Environmental Science and Engineering(). Springer, Singapore. https://doi.org/10.1007/978-981-13-2227-3_36

Download citation

Publish with us

Policies and ethics